&
R IF."I--L.- 'E

Sixth Edition

Chapter 18 Fundamentals of

Indexing Database
Structures for | Syste mS
Files

Elmasri Navathe

Addison-Wesley
is an imprint of

i
W Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Disk I/O for Read/ Write

o
 Unit for Disk I/0O for Read/ Write:
— One Buffer for Read — One Block Size

— One Buffer for Write — One Block Size

 Size of Block = Sector in Disk

— Traditionally 512 bytes
— Modern OS uses 8* 512 = 4096 bytes

W Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



']
« Disk Access Time = Seek Time + Latency

e Seek Time

the time it takes the head assembly on the
actuator arm to travel to the track of the disk
where the data will be read or written

* Rotational Latency

the delay waiting for the rotation of the disk to
bring the required disk sector under the read-
write head.

Addison-Wesley
is an imprint of

W Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley




Data Tr;\nsfer Rate

5
 This rate depends on the track location, so it will

be higher for data on the outer tracks (where
there are more data sectors) and lower toward
the inner tracks

moving data between the disk surface and the
controller on the drive

moving data between the controller on the drive
and the host system

Addison-Wesley
is an imprint of

-
W Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Cost Metric

« Query Processing Cost
= Disk I/O Cost + CPU Computation Cost

 Disk I/0 Cost
= Disk Access Time + Data Transfer Time

Disk Acess Time

=5 ms + 3 ms in Average
= 8 ms in Average
One block (4096 bytes) of disk I/O takes 8 ms in ave

Addison-Wesley
is an imprint of

lw Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley




Indexes as Access Paths

= A single-level index is an auxiliary file that makes
It more efficient to search for a record in the data
file.

= The index is usually specified on one field of the
file (although it could be specified on several
fields)

a One form of an index is a file of entries <field
value, pointer to record>, which is ordered by
fleld value

= [he index is called an access path on the field.

is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Indexes as Access Paths (cont.)

= The index file usually occupies considerably less disk
blocks than the data file because its entries are much
smaller

= A binary search on the index yields a pointer to the file
record
= Indexes can also be characterized as dense or sparse

= A dense index has an index entry for every search key
value (and hence every record) in the data file.

= A sparse (or nondense) index, on the other hand, has
iIndex entries for only some of the search values

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Indexes as Access Paths (cont.)

» Example: Given EMPLOYEE(NAME, SSN, ADDRESS, JOB, SAL, ...)
=  Suppose that:

= record size R=150 bytes

= block size B=512 bytes r=30000 records
= [hen, we get:

= blocking factor Bfr= B div R= 512 div 150= 3 records/block

= number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks

= For anindex on the SSN field, assume the field size V=9 bytes,
assume the record pointer size Py=7 bytes. Then:

= index entry size R=(V¢q+ Pr)=(9+7)=16 bytes
index blocking factor Bfr= B div R= 512 div 16= 32 entries/block
number of index blocks b= (r/ Bfr)= (30000/32)= 938 blocks
binary search needs log,bl=109,938= 10 block accesses
This is compared to an average linear search cost of:
= (b/2)=10000/2= 5000 block accesses
= If the file records are ordered, the binary search cost would be:
= log,b= log, 10000 = 12 - 13 block accesses

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Types of Single-Level Indexes

= Primary Index

Defined on an ordered data file
The data file is ordered on a key field

Includes one index entry for each block in the data file; the
index entry has the key field value for the first record in the
block, which is called the block anchor

A similar scheme can use the last record in a block.

A primary index is a nondense (sparse) index, since it
includes an entry for each disk block of the data file and the
keys of its anchor record rather than for every search value.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Figure 18.1 (Primary
Primary index on the ordering key field of key field)
the file shown in Figure 17.7. Name Ssn |Birth_date | Job | Salary | Sex

Primary Index =
on the Ordering L T

——— | Adams, John

Key Field

Akers, Jan I | I | |

Index file

(<K(i), P(i)> entries) > | Alexander, Ed
Alfred, Bob
Block anchor
primary key Block Allen, Sam | I | | |
value pointer
Aaron, Ed © — | Allen, Troy
Adams, John ¢ Anders, Keith
Alexander, Ed o H
Allen, Troy © Anderson, Rob I | I | |
Anderson, Zach
Arnold, Mack ° |—> Anderson, Zach
: Angel, Joe
Archer, Sue | | | | |
. —— [ Arnold, Mack
: Arnold, Steven

Atkins, Tmothy | | ' | ] |

— | Wong, James
Wood, Donald

Wong, James ° i
Wright, Pam e Woods, Manny | | | | |

L—— | Wright, Pam
Wyatt, Charles

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navarthe

Zimmer, Byron I | I | |




Types of Single-Level Indexes

s Clustering Index
= Defined on an ordered data file

= [he data file is ordered on a non-key field unlike primary
iIndex, which requires that the ordering field of the data file
have a distinct value for each record.

= Includes one index entry for each distinct value of the field;
the index entry points to the first data block that contains ;
records with that field value. |

= It is another example of nondense index where Insertion
and Deletion is relatively straightforward with a clustering
iIndex.

Addison-Wes ley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Data file

(Clustering
field)
' Dept_number | Name | Ssn | Job |Birth_date | Salary
A Clustering .
e 1
Index 1
2
Example Index file — 2
(<K(i), P(i)> entries) 3
3
Clustering Block 3
field value pointer

1 . — 3
2 i 3
3 ° 4
4 . 4

5 R
6 ° \—> 5
8 . 5
5
5
L e 5
6
6
6
I 6
Figure 18.2 8
Addison-Wesley A clustering index on the Dept_number ordering 8
iszaimerinter nonkey field of an EMPLOYEE file. 8

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Figure 18.3 Data file

Clusteri
Clustering index with a ( }133)”“9
separate block cluster for Dept_number | Name | Ssn | Job |Birth_date | Salary
each group of records 1
that share the same value 1
A n Ot h e r for the clustering field. -
Block pointer o—
u j__ NULL pointer
Clusterin T ]
2
Block pointer 0—1
L NULL pointer
Index [ -
3
Xal I Ip e Index file s -
(<K(i), P(i)> entries) Block pointer ¢
e T T T
Clustering Block Block pointer *—
field value pointer NULL pointer
1 - — 4 =
2 bt 4
3 -
- Block pointer o—
4
5 ~— L NULL pointer
6 L 5 i
8 5
5
5
Block pointer '—1
_L_NULL pointer
> 6 =
6
6
6
Block pointer  e———
|
S T T T T
Block pointer 0—1
_L_NULL pointer
= 8 =
8
8
Block pointer —
Addison-Wesley p }
is an imprint of _L_NULL pointer

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Types of Single-Level Indexes

= Secondary Index

= A secondary index provides a secondary means of
accessing a file for which some primary access already
exists.

= [he secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

= [he index is an ordered file with two fields.

= The first field is of the same data type as some non-ordering
field of the data file that is an indexing field.

= [he second field is either a block pointer or a record pointer.

= There can be many secondary indexes (and hence, indexing
fields) for the same file.

= Includes one entry for each record in the data file; hence, it
Is a dense index

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Example of
a Dense
Secondary
Index

Addison-Wesley
is an imprint of

Figure 18.4
A dense secondary index (with block pointers) on a nonordering key field of a file.

Index file Data file
(<K(i), P(i)> entries) Indexing field
(secondary
key field)
. Index Blpck > 9
field value pointer >
- = 5
1 - - 13
; : 8
4 ® -
5 . - 6
- o= 15
3 : - 3
8 . 17
> 21
9 ‘ - 11
10 b — 16
11 ° D)
12 o
13 L. - oa
14 1 > 10
15 ° > 20
16 T 1
[
17 : > 4
18 Pl -~ 23
19 .- 18
20 o 14
21 °
22 — > 12
23 . > 7
24 ° o 19
22

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Figure 18.5 Data file

A secondary index (with (Indexing field)

recor.d pqlnters) on a non- Dept_number | Name | Ssn | Job |Birth_date | Salary
key field implemented
E | f using one level of indirec- Blocks of 3
Xal I lp e O tion so that index entries record > S
are of fixed length and pointers r+ 1
a eCO n d ar ha\/e Unique f|e|d VaerS. | L 6
S y —[N T
| > 2
Index | e
» . > 4
Index file —TJ—| - 8
(<K(i), P(i)> entries) i
Field  Block S ITIT. - 5
value pointer o 5
1 . T -
L > 4
2 ¢ : - ]
3 . s | . i
m—L
5 — | - 6
_|_> T 5
8 — = 2
iy - 5
| I,
L [d]4
o > 5
Fo i —
. | -~ 6
—=1 1]y -3
L
- 6
L 3
| 8
Addison-Wesley
is an imprint of S 3

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Properties of Index Types

Table 18.2 Properties of Index Types

Tvoe of Index Number of (First-level) Dense or Nondense Block Anchoring
P Index Entries (Sparse) on the Data File
Primary Number of blocks in Nondense Yes
data file
Clustering Number of distinct Nondense Yes/no?
index field values
Secondary (key) Number of records in Dense No
data file
Secondary (nonkey) Number of recordsP or Dense or Nondense No

number of distinct index
field values®©

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Multi-Level Indexes

s Because a single-level index is an ordered file, we can
create a primary index to the index itself;
= In this case, the original index file is called the first-level

iIndex and the index to the index is called the second-level
index.

= We can repeat the process, creating a third, fourth, ..., top
level until all entries of the top level fit in one disk block

= A multi-level index can be created for any type of first-
level index (primary, secondary, clustering) as long as the
first-level index consists of more than one disk block

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Figure 18.6
A two-level primary index resembling ISAM (Indexed Sequential
Access Method) organization.

A WO - Leve | Two-level index Data file

First (base) Primary
key field

Primary Index S RN
15 _|_> -

24 o
12
21
Second (top) 29

level
2 j 35 — 35
35 ~—— 39 e 36

55 . 44 o
39

85 51 C
41
L 44
46
L 51
52
| 55 — I 55
63 o—| 58

71 °
80 63
66
L 71
78
a5 l — 80

- ~—

82
Addison-Wesley 85
is an imprint of 89

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



Multi-Level Indexes

s Such a multi-level index is a form of search tree

= However, insertion and deletion of new index
entries is a severe problem because every level of
the index i1s an ordered file.

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



A Node in a Search Tree with Pointers to
Subtrees Below It

Figure 18.8 P, Ki |l ... | Kiile P K; | Kyt | Py

A node in a search i
tree with pointers to / l P, \

subtrees below it.

X<K, K <X<K K, <X

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Figure 18.9 EI Tree node pointer
A search tree of

order p= 3. I:I Null tree pointer

s

e

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Eimasri and Shamkant Navathe

12




Dynamic Multilevel Indexes Using B-
Trees and B+-Trees

is an imprint of

Most multi-level indexes use B-tree or B+-tree data
structures because of the insertion and deletion problem

= This leaves space in each tree node (disk block) to allow for
new index entries

These data structures are variations of search trees that
allow efficient insertion and deletion of new search values.

In B-Tree and B+-Tree data structures, each node
corresponds to a disk block

Each node is kept between half-full and completely full

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Dynamic Multilevel Indexes Using B-
Trees and B+-Trees (cont.)

= An insertion into a node that is not full is quite
efficient

= If a node is full the insertion causes a split into two
nodes

s Splitting may propagate to other tree levels

= A deletion is quite efficient if a node does not
become less than half full

s If a deletion causes a node to become less than
half full, it must be merged with neighboring
nodes

is an imprint of

BLUSIOLN Copyright © 2011 Ramez EImasri and Shamkant Navathe




Difference between B-tree and B+-tree

= |In a B-tree, pointers to data records exist at all
evels of the tree

= In a B+-tree, all pointers to data records exists at
the leaf-level nodes

= A B+-tree can have less levels (or higher capacity
of search values) than the corresponding B-tree

is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




B-tree Structures

€)) rP1 Ki|Pri| B2 oo | Koy |oPrict TP,- KilPri| - | Ke1|oPro-1| Py .
Tree Tree
Y Y pointer Y Y pointer
Trge Data Data Data Data
pointer pointer v pointer pointer pointer
Tree
pointer
X<K, Ko< X<K; Kp-1 <X
(b) o[5S |o||e]||8]|c]]e ® | Tree node pointer
o | Data pointer
Null tree pointer
\/ ||
1 1]o 3 |o 6 |o 7 |o 9 |o 12|o
Figure 18.10
B-tree structures. (a) A node in a B-tree with g — 1 search values. (b) A B-tree

of order p = 3.The values were inserted in the order 8,5, 1,7, 3, 12, 9, 6.

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




The Nodes of a B+-tree

Figure 18.11
The nodes of a B*-tree. (a) Internal node of a B*-tree with g — 1 search values.
(b) Leaf node of a B*-tree with g — 1 search values and g — 1 data pointers.

(a) o Pi K, | K| 9P K. Koot | Pye

Tree Tree Tree
pointer pointer pointer

X< K, K_<X<LK; Ky-1 <X
(b) .
K, |.Pr Ko Pr| - [K Pl o [ Koo oPros] Proe o | s;’)'(:‘tlz;fo
node in
Y Y Y Y tree
Data Data Data Data
pointer pointer pointer pointer

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Example of
an Insertion
In a B+-tree

Addison-Wesley
is an imprint of

Insertion sequence: 8,5,1,7,3,12,9,6

~<&—Insert 1: overflow (new level)

|Z| Tree node pointer

le| 5 |4
£ \

[iTo] [sTo] |+

~<+—Insert 7 Null tree pointer

|E| Data pointer

A

Li[o] [s]o] |sp=| [7[o] [#]0]

Insert 12: overflow (split, propagates,

new level)

1
Insert 3: overflow e S
(split) ﬁ, \

:

Lifo] [s[o] |+~ [s]o]

\i
| [7]o] [e]o]

-l —o
-

[e]
——e

Insert 9 —l

Li[o] [3]o] || [5]]

1
| [7]o] [e[o]|+p=| [12]o]

-t —o
-

[]
——o

! v

Li]o] [s]o] |«~| [5]o]

*p~| [7[o] [e[o] | s=~|[e[o] [12]c]

Insert 6: overflow (split, propagates)

-
-

lEl | [7]]y] [e]
|

y ¥

Li]o] [3]o] |«p~| [5]9]

1
+1~{ [6e] [7[o] |+»|[8]e] | [2lo] [12[o]

Figure 18.12

An example of insertion in a B*-tree with p =3 and p = 2.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Deletion sequence: 5, 12,9

$
N
-

Example of
a Deletion In
a B+-tree

8
hd
v

hd
v
®
o
o
—|T
©
q
B B

5]

l

Delete 5

v
¢
-
(o))
?
-—e
©
q
-

|~

[@]
?
v

Delete 12: underflow
(redistribute)

[

'

?
v
é
o
o
*

|

Delete 9: underflow
¢ (merge with left, redistribute)

- :

-

\

[1]e] S —

Addison-Wesley
is an imprint of

Figure 18.13
An example of deletion from a B*-tree.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe




Summary

s Types of Single-level Ordered Indexes
= Primary Indexes
» Clustering Indexes
= Secondary Indexes

= Multilevel Indexes

= Dynamic Multilevel Indexes Using B-Trees
and B+-Trees

= Indexes on Multiple Keys

Addison-Wesley
is an imprint of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe



