
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 18

Indexing

Structures for

Files

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 18

Indexing

Structures for

Files

Disk I/O for Read/ Write

• Unit for Disk I/O for Read/ Write:

– One Buffer for Read – One Block Size

– One Buffer for Write – One Block Size

• Size of Block = Sector in Disk

– Traditionally 512 bytes

– Modern OS uses 8* 512 = 4096 bytes

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 18

Indexing

Structures for

Files

Access Time

• Disk Access Time = Seek Time + Latency

• Seek Time

the time it takes the head assembly on the

actuator arm to travel to the track of the disk

where the data will be read or written

• Rotational Latency

the delay waiting for the rotation of the disk to

bring the required disk sector under the read-

write head.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 18

Indexing

Structures for

Files

Data Transfer Rate

• This rate depends on the track location, so it will
be higher for data on the outer tracks (where
there are more data sectors) and lower toward
the inner tracks

• Internal rate

moving data between the disk surface and the
controller on the drive

• External rate

moving data between the controller on the drive
and the host system

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Chapter 18

Indexing

Structures for

Files

Cost Metric

• Query Processing Cost
= Disk I/O Cost + CPU Computation Cost

• Disk I/O Cost
= Disk Access Time + Data Transfer Time

• Disk Acess Time
= Seek Time + Latency
= 5 ms + 3 ms in Average
= 8 ms in Average

• One block (4096 bytes) of disk I/O takes 8 ms in ave

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Indexes as Access Paths

� A single-level index is an auxiliary file that makes
it more efficient to search for a record in the data
file.

� The index is usually specified on one field of the
file (although it could be specified on several
fields)

� One form of an index is a file of entries <field
value, pointer to record>, which is ordered by
field value

� The index is called an access path on the field.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Indexes as Access Paths (cont.)

� The index file usually occupies considerably less disk
blocks than the data file because its entries are much

smaller

� A binary search on the index yields a pointer to the file

record

� Indexes can also be characterized as dense or sparse

� A dense index has an index entry for every search key

value (and hence every record) in the data file.

� A sparse (or nondense) index, on the other hand, has

index entries for only some of the search values

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Indexes as Access Paths (cont.)

� Example: Given EMPLOYEE(NAME, SSN, ADDRESS, JOB, SAL, ...)
� Suppose that:

� record size R=150 bytes
� block size B=512 bytes r=30000 records

� Then, we get:
� blocking factor Bfr= B div R= 512 div 150= 3 records/block
� number of file blocks b= (r/Bfr)= (30000/3)= 10000 blocks

� For an index on the SSN field, assume the field size VSSN=9 bytes,
assume the record pointer size PR=7 bytes. Then:
� index entry size RI=(VSSN+ PR)=(9+7)=16 bytes
� index blocking factor BfrI= B div RI= 512 div 16= 32 entries/block
� number of index blocks b= (r/ BfrI)= (30000/32)= 938 blocks
� binary search needs log2bI= log2938= 10 block accesses
� This is compared to an average linear search cost of:

� (b/2)= 10000/2= 5000 block accesses

� If the file records are ordered, the binary search cost would be:
� log2b= log2 10000 = 12 - 13 block accesses

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Single-Level Indexes

� Primary Index

� Defined on an ordered data file

� The data file is ordered on a key field

� Includes one index entry for each block in the data file; the

index entry has the key field value for the first record in the

block, which is called the block anchor

� A similar scheme can use the last record in a block.

� A primary index is a nondense (sparse) index, since it

includes an entry for each disk block of the data file and the

keys of its anchor record rather than for every search value.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Primary Index
on the Ordering
Key Field

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Single-Level Indexes

� Clustering Index

� Defined on an ordered data file

� The data file is ordered on a non-key field unlike primary

index, which requires that the ordering field of the data file
have a distinct value for each record.

� Includes one index entry for each distinct value of the field;

the index entry points to the first data block that contains

records with that field value.

� It is another example of nondense index where Insertion

and Deletion is relatively straightforward with a clustering

index.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

A Clustering
Index
Example

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Another
Clustering
Index
Example

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Types of Single-Level Indexes

� Secondary Index
� A secondary index provides a secondary means of

accessing a file for which some primary access already
exists.

� The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

� The index is an ordered file with two fields.
� The first field is of the same data type as some non-ordering

field of the data file that is an indexing field.
� The second field is either a block pointer or a record pointer.
� There can be many secondary indexes (and hence, indexing

fields) for the same file.

� Includes one entry for each record in the data file; hence, it
is a dense index

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of
a Dense
Secondary
Index

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of
a Secondary
Index

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Properties of Index Types

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-Level Indexes

� Because a single-level index is an ordered file, we can
create a primary index to the index itself;

� In this case, the original index file is called the first-level

index and the index to the index is called the second-level

index.

� We can repeat the process, creating a third, fourth, ..., top

level until all entries of the top level fit in one disk block

� A multi-level index can be created for any type of first-

level index (primary, secondary, clustering) as long as the
first-level index consists of more than one disk block

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

A Two-Level
Primary Index

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Multi-Level Indexes

� Such a multi-level index is a form of search tree

� However, insertion and deletion of new index
entries is a severe problem because every level of

the index is an ordered file.

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

A Node in a Search Tree with Pointers to
Subtrees Below It

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees

� Most multi-level indexes use B-tree or B+-tree data
structures because of the insertion and deletion problem

� This leaves space in each tree node (disk block) to allow for

new index entries

� These data structures are variations of search trees that

allow efficient insertion and deletion of new search values.

� In B-Tree and B+-Tree data structures, each node

corresponds to a disk block

� Each node is kept between half-full and completely full

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Dynamic Multilevel Indexes Using B-
Trees and B+-Trees (cont.)

� An insertion into a node that is not full is quite
efficient

� If a node is full the insertion causes a split into two
nodes

� Splitting may propagate to other tree levels

� A deletion is quite efficient if a node does not
become less than half full

� If a deletion causes a node to become less than
half full, it must be merged with neighboring
nodes

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Difference between B-tree and B+-tree

� In a B-tree, pointers to data records exist at all

levels of the tree

� In a B+-tree, all pointers to data records exists at

the leaf-level nodes

� A B+-tree can have less levels (or higher capacity

of search values) than the corresponding B-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

B-tree Structures

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

The Nodes of a B+-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of
an Insertion
in a B+-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Example of

a Deletion in

a B+-tree

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Summary

� Types of Single-level Ordered Indexes

� Primary Indexes

� Clustering Indexes

� Secondary Indexes

� Multilevel Indexes

� Dynamic Multilevel Indexes Using B-Trees

and B+-Trees

� Indexes on Multiple Keys

