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Method of Separation of Variables

“However, the emphasis should be somewhat more on how to do the math-
ematics quickly and easily, and what formulas are true, rather than the
mathematicians’ interest in methods of rigorous proof.”

Richard Feynman

“As a science, mathematics has been adapted to the description of
natural phenomena, and the great practitioners in this field, such as von
Kármán, Taylor and Lighthill, have never concerned themselves with the
logical foundations of mathematics, but have boldly taken a pragmatic view
of mathematics as an intellectual machine which works successfully. De-
scription has been verified by further observation, still more strikingly by
prediction, .... ”

George Temple

7.1 Introduction

The method of separation of variables combined with the principle of super-
position is widely used to solve initial boundary-value problems involving
linear partial differential equations. Usually, the dependent variable u (x, y)
is expressed in the separable form u (x, y) = X (x) Y (y), where X and Y
are functions of x and y respectively. In many cases, the partial differen-
tial equation reduces to two ordinary differential equations for X and Y .
A similar treatment can be applied to equations in three or more indepen-
dent variables. However, the question of separability of a partial differential
equation into two or more ordinary differential equations is by no means a
trivial one. In spite of this question, the method is widely used in finding
solutions of a large class of initial boundary-value problems. This method
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of solution is also known as the Fourier method (or the method of eigenfunc-
tion expansion). Thus, the procedure outlined above leads to the important
ideas of eigenvalues, eigenfunctions, and orthogonality, all of which are very
general and powerful for dealing with linear problems. The following exam-
ples illustrate the general nature of this method of solution.

7.2 Separation of Variables

In this section, we shall introduce one of the most common and elementary
methods, called the method of separation of variables, for solving initial
boundary-value problems. The class of problems for which this method
is applicable contains a wide range of problems of mathematical physics,
applied mathematics, and engineering science.

We now describe the method of separation of variables and examine
the conditions of applicability of the method to problems which involve
second-order partial differential equations in two independent variables.

We consider the second-order homogeneous partial differential equation

a∗ux∗x∗ + b∗ux∗y∗ + c∗uy∗y∗ + d∗ux∗ + e∗uy∗ + f∗u = 0 (7.2.1)

where a∗, b∗, c∗, d∗, e∗ and f∗ are functions of x∗ and y∗.
We have stated in Chapter 4 that by the transformation

x = x (x∗, y∗) , y = y (x∗, y∗) , (7.2.2)

where

∂ (x, y)

∂ (x∗, y∗)
�= 0,

we can always transform equation (7.2.1) into canonical form

a (x, y) uxx + c (x, y) uyy + d (x, y) ux + e (x, y) uy + f (x, y) u = 0, (7.2.3)

which when

(i) a = −c is hyperbolic,
(ii) a = 0 or c = 0 is parabolic,
(iii) a = c is elliptic.

We assume a separable solution of (7.2.3) in the form

u (x, y) = X (x) Y (y) �= 0, (7.2.4)

where X and Y are, respectively, functions of x and of y alone, and are
twice continuously differentiable. Substituting equations (7.2.4) into equa-
tion (7.2.3), we obtain
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a X ′′Y + c XY ′′ + dX ′Y + e XY ′ + f XY = 0, (7.2.5)

where the primes denote differentiation with respect to the appropriate
variables. Let there exist a function p (x, y), such that, if we divide equation
(7.2.5) by p (x, y), we obtain

a1 (x) X ′′Y + b1 (y) XY ′′ + a2 (x) X ′Y + b2 (y) XY ′

+ [a3 (x) + b3 (y)]XY = 0. (7.2.6)

Dividing equation (7.2.6) again by XY , we obtain

[
a1

X ′′

X
+ a2

X ′

X
+ a3

]
= −

[
b1

Y ′′

Y
+ b2

Y ′

Y
+ b3

]
. (7.2.7)

The left side of equation (7.2.7) is a function of x only. The right side
of equation (7.2.7) depends only upon y. Thus, we differentiate equation
(7.2.7) with respect to x to obtain

d

dx

[
a1

X ′′

X
+ a2

X ′

X
+ a3

]
= 0. (7.2.8)

Integration of equation (7.2.8) yields

a1
X ′′

X
+ a2

X ′

X
+ a3 = λ, (7.2.9)

where λ is a separation constant. From equations (7.2.7) and (7.2.9), we
have

b1
Y ′′

Y
+ b2

Y ′

Y
+ b3 = −λ. (7.2.10)

We may rewrite equations (7.2.9) and (7.2.10) in the form

a1X
′′ + a2X

′ + (a3 − λ) X = 0, (7.2.11)

and

b1Y
′′ + b2Y

′ + (b3 + λ) Y = 0. (7.2.12)

Thus, u (x, y) is the solution of equation (7.2.3) if X (x) and Y (y) are
the solutions of the ordinary differential equations (7.2.11) and (7.2.12)
respectively.

If the coefficients in equation (7.2.1) are constant, then the reduction of
equation (7.2.1) to canonical form is no longer necessary. To illustrate this,
we consider the second-order equation

Auxx + Buxy + Cuyy + Dux + Euy + Fu = 0, (7.2.13)
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where A, B, C, D, E, and F are constants which are not all zero.
As before, we assume a separable solution in the form

u (x, y) = X (x) Y (y) �= 0.

Substituting this in equation (7.2.13), we obtain

AX ′′Y + BX ′Y ′ + CXY ′′ + DX ′Y + EXY ′ + FXY = 0. (7.2.14)

Division of this equation by AXY yields

X ′′

X
+

B

A

X ′

X

Y ′

Y
+

C

A

Y ′′

Y
+

D

A

X ′

X
+

E

A

Y ′

Y
+

F

A
= 0, A �= 0. (7.2.15)

We differentiate this equation with respect to x to obtain

(
X ′′

X

)′
+

B

A

(
X ′

X

)′
Y ′

Y
+

D

A

(
X ′

X

)′
= 0. (7.2.16)

Thus, we have

(
X′′

X

)′

B
A

(
X′

X

)′ +
D

B
= −Y ′

Y
. (7.2.17)

This equation is obviously separable, so that both sides must be equal to a
constant λ. Therefore, we obtain

Y ′ + λY = 0, (7.2.18)
(

X ′′

X

)′
+

(
D

B
− λ

)
B

A

(
X ′

X

)′
= 0. (7.2.19)

Integrating equation (7.2.19) with respect to x, we obtain

X ′′

X
+

(
D

B
− λ

)
B

A

(
X ′

X

)
= −β, (7.2.20)

where β is a constant to be determined. Substituting equation (7.2.18) into
the original equation (7.2.15), we obtain

X ′′ +

(
D

B
− λ

)
B

A
X ′ +

(
λ2 − E

C
λ +

F

C

)
C

A
X = 0. (7.2.21)

Comparing equations (7.2.20) and (7.2.21), we clearly find

β =

(
λ2 − E

C
λ +

F

C

)
C

A
.

Therefore, u (x, y) is a solution of equations (7.2.13) if X (x) and Y (y)
satisfy the ordinary differential equations (7.2.21) and (7.2.18) respectively.
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We have just described the conditions on the separability of a given
partial differential equation. Now, we shall take a look at the boundary
conditions involved. There are several types of boundary conditions. The
ones that appear most frequently in problems of applied mathematics and
mathematical physics include

(i) Dirichlet condition: u is prescribed on a boundary
(ii) Neumann condition: (∂u/∂n) is prescribed on a boundary
(iii) Mixed condition: (∂u/∂n) + hu is prescribed on a boundary, where

(∂u/∂n) is the directional derivative of u along the outward normal to
the boundary, and h is a given continuous function on the boundary.
For details, see Chapter 9 on boundary-value problems.

Besides these three boundary conditions, also known as, the first, second,
and third boundary conditions, there are other conditions, such as the Robin
condition; one condition is prescribed on one portion of a boundary and
another is given on the remainder of the boundary. We shall consider a
variety of boundary conditions as we treat problems later.

To separate boundary conditions, such as the ones listed above, it is
best to choose a coordinate system suitable to a boundary. For instance,
we choose the Cartesian coordinate system (x, y) for a rectangular region
such that the boundary is described by the coordinate lines x = constant
and y = constant, and the polar coordinate system (r, θ) for a circular
region so that the boundary is described by the lines r = constant and
θ = constant.

Another condition that must be imposed on the separability of boundary
conditions is that boundary conditions, say at x = x0, must contain the
derivatives of u with respect to x only, and their coefficients must depend
only on x. For example, the boundary condition

[u + uy]x=x0
= 0

cannot be separated. Needless to say, a mixed condition, such as ux + uy,
cannot be prescribed on an axis.

7.3 The Vibrating String Problem

As a first example, we shall consider the problem of a vibrating string of
constant tension T ∗ and density ρ with c2 = T ∗/ρ stretched along the x-
axis from 0 to l, fixed at its end points. We have seen in Chapter 5 that the
problem is given by

utt − c2uxx = 0, 0 < x < l, t > 0, (7.3.1)

u (x, 0) = f (x) , 0 ≤ x ≤ l, (7.3.2)

ut (x, 0) = g (x) , 0 ≤ x ≤ l, (7.3.3)

u (0, t) = 0, t ≥ 0, (7.3.4)

u (l, t) = 0, t ≥ 0, (7.3.5)
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where f and g are the initial displacement and initial velocity respectively.
By the method of separation of variables, we assume a solution in the

form

u (x, t) = X (x) T (t) �= 0. (7.3.6)

If we substitute equation (7.3.6) into equation (7.3.1), we obtain

XT ′′ = c2X ′′T,

and hence,

X ′′

X
=

1

c2

T ′′

T
, (7.3.7)

whenever XT �= 0. Since the left side of equation (7.3.7) is independent of
t and the right side is independent of x, we must have

X ′′

X
=

1

c2

T ′′

T
= λ,

where λ is a separation constant. Thus,

X ′′ − λX = 0, (7.3.8)

T ′′ − λc2T = 0. (7.3.9)

We now separate the boundary conditions. From equations (7.3.4) and
(7.3.6), we obtain

u (0, t) = X (0) T (t) = 0.

We know that T (t) �= 0 for all values of t, therefore,

X (0) = 0. (7.3.10)

In a similar manner, boundary condition (7.3.5) implies

X (l) = 0. (7.3.11)

To determine X (x) we first solve the eigenvalue problem (eigenvalue
problems are also treated in Chapter 8)

X ′′ − λX = 0, X (0) = 0, X (l) = 0. (7.3.12)

We look for values of λ which gives us nontrivial solutions. We consider
three possible cases

λ > 0, λ = 0, λ < 0.

Case 1. λ > 0. The general solution in this case is of the form
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X (x) = Ae−
√

λ x + Be
√

λ x

where A and B are arbitrary constants. To satisfy the boundary conditions,
we must have

A + B = 0, Ae−
√

λ l + Be
√

λ l = 0. (7.3.13)

We see that the determinant of the system (7.3.13) is different from zero.
Consequently, A and B must both be zero, and hence, the general solution
X (x) is identically zero. The solution is trivial and hence, is no interest.

Case 2. λ = 0. Here, the general solution is

X (x) = A + Bx.

Applying the boundary conditions, we have

A = 0, A + Bl = 0.

Hence A = B = 0. The solution is thus identically zero.
Case 3. λ < 0. In this case, the general solution assumes the form

X (x) = A cos
√

−λx + B sin
√

−λx.

From the condition X (0) = 0, we obtain A = 0. The condition X (l) = 0
gives

B sin
√

−λ l = 0.

If B = 0, the solution is trivial. For nontrivial solutions, B �= 0, hence,

sin
√

−λ l = 0.

This equation is satisfied when

√
−λ l = nπ for n = 1, 2, 3, . . . ,

or

−λn = (nπ/l)
2
. (7.3.14)

For this infinite set of discrete values of λ, the problem has a nontrivial
solution. These values of λn are called the eigenvalues of the problem, and
the functions

sin (nπ/l) x, n = 1, 2, 3, . . .

are the corresponding eigenfunctions.
We note that it is not necessary to consider negative values of n since

sin (−n) πx/l = − sin nπx/l.
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No new solution is obtained in this way.
The solutions of problems (7.3.12) are, therefore,

Xn (x) = Bn sin (nπx/l) . (7.3.15)

For λ = λn, the general solution of equation (7.3.9) may be written in
the form

Tn (t) = Cn cos
(nπc

l

)
t + Dn sin

(nπc

l

)
t, (7.3.16)

where Cn and Dn are arbitrary constants.
Thus, the functions

un (x, t) = Xn (x) Tn (t) =
(
an cos

nπc

l
t + bn sin

nπc

l
t
)

sin
(nπx

l

)
(7.3.17)

satisfy equation (7.3.1) and the boundary conditions (7.3.4) and (7.3.5),
where an = BnCn and bn = BnDn.

Since equation (7.3.1) is linear and homogeneous, by the superposition
principle, the infinite series

u (x, t) =

∞∑

n=1

(
an cos

nπc

l
t + bn sin

nπc

l
t
)

sin
(nπx

l

)
(7.3.18)

is also a solution, provided it converges and is twice continuously differ-
entiable with respect to x and t. Since each term of the series satisfies
the boundary conditions (7.3.4) and (7.3.5), the series satisfies these condi-
tions. There remain two more initial conditions to be satisfied. From these
conditions, we shall determine the constants an and bn.

First we differentiate the series (7.3.18) with respect to t. We have

ut =

∞∑

n=1

nπc

l

(
−an sin

nπc

l
t + bn cos

nπc

l
t
)

sin
(nπx

l

)
. (7.3.19)

Then applying the initial conditions (7.3.2) and (7.3.3), we obtain

u (x, 0) = f (x) =
∞∑

n=1

an sin
(nπx

l

)
, (7.3.20)

ut (x, 0) = g (x) =

∞∑

n=1

bn

(nπc

l

)
sin

(nπx

l

)
. (7.3.21)

These equations will be satisfied if f (x) and g (x) can be represented by
Fourier sine series. The coefficients are given by

an =
2

l

∫ l

0

f (x) sin
(nπx

l

)
dx, bn =

2

nπc

∫ l

0

g (x) sin
(nπx

l

)
dx,

(7.3.22ab)
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The solution of the vibrating string problem is therefore given by the series
(7.3.18) where the coefficients an and bn are determined by the formulae
(7.3.22ab).

We examine the physical significance of the solution (7.3.17) in the
context of the free vibration of a string of length l. The eigenfunctions

un (x, t) = (an cos ωnt + bn sin ωnt) sin
(nπx

l

)
, ωn =

nπc

l
, (7.3.23)

are called the nth normal modes of vibration or the nth harmonic, and
ωn represent the discrete spectrum of circular (or radian) frequencies or
νn = ωn

2π = nc
2l , which are called the angular frequencies. The first harmonic

(n = 1) is called the fundamental harmonic and all other harmonics (n > 1)
are called overtones. The frequency of the fundamental mode is given by

ω1 =
πc

l
, ν1 =

1

2l

√
T ∗

ρ
. (7.3.24)

Result (7.3.24) is considered the fundamental law (or Mersenne law) of
a stringed musical instrument. The angular frequency of the fundamental
mode of transverse vibration of a string varies as the square root of the
tension, inversely as length, and inversely as the square root of the density.
The period of the fundamental mode is T1 = 2c

ω1
= 2l

c , which is called the
fundamental period. Finally, the solution (7.3.18) describes the motion of a
plucked string as a superposition of all normal modes of vibration with fre-
quencies which are all integral multiples (ωn = nω1 or νn = nν1) of the
fundamental frequency. This is the main reason that stringed instruments
produce sweeter musical sounds (or tones) than drum instruments.

In order to describe waves produced in the plucked string with zero
initial velocity (ut (x, 0) = 0), we write the solution (7.3.23) in the form

un (x, t) = an sin
(nπx

l

)
cos

(
nπct

l

)
, n = 1, 2, 3, . . . . (7.3.25)

These solutions are called standing waves with amplitude an sin
(

nπx
l

)
,

which vanishes at

x = 0,
l

n
,

2l

n
, . . . , l.

These are called the nodes of the nth harmonic. The string displays n loops
separated by the nodes as shown in Figure 7.3.1.

It follows from elementary trigonometry that (7.3.25) takes the form

un (x, t) =
1

2
an

[
sin

nπ

l
(x − ct) + sin

nπ

l
(x + ct)

]
. (7.3.26)

This shows that a standing wave is expressed as a sum of two progressive
waves of equal amplitude traveling in opposite directions. This result is in
agreement with the d’Alembert solution.
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Figure 7.3.1 Several modes of vibration in a string.

Finally, we can rewrite the solution (7.3.23) of the nth normal modes in
the form

un (x, t) = cn sin
(nπx

l

)
cos

(
nπct

l
− εn

)
, (7.3.27)

where cn =
(
a2

n + b2
n

) 1
2 and tan εn =

(
bn

an

)
.

This solution represents transverse vibrations of the string at any point
x and at any time t with amplitude cn sin

(
nπx

l

)
and circular frequency

ωn = nπc
l . This form of the solution enables us to calculate the kinetic and

potential energies of the transverse vibrations. The total kinetic energy
(K.E.) is obtained by integrating with respect to x from 0 to l, that is,

Kn = K.E. =

∫ l

0

1

2
ρ

(
∂un

∂t

)2

dx, (7.3.28)

where ρ is the line density of the string. Similarly, the total potential energy
(P.E.) is given by

Vn = P.E. =
1

2
T ∗

∫ l

0

(
∂un

∂x

)2

dx. (7.3.29)

Substituting (7.3.27) in (7.3.28) and (7.3.29) gives

Kn =
1

2
ρ
(nπc

l
cn

)2

sin2

(
nπct

l
− εn

)∫ l

0

sin2
(nπx

l

)
dx

=
ρc2π2

4l
(n cn)

2
sin2

(
nπct

l
− εn

)
=

1

4
ρlω2

nc2
n sin2 (ωnt − εn) , (7.3.30)

where ωn = nπc
l .



7.3 The Vibrating String Problem 241

Similarly,

Vn =
1

2
T ∗

(nπcn

l

)2

cos2
(

nπct

l
− εn

)∫ l

0

cos2
(nπx

l

)
dx

=
π2T ∗

4l
(n cn)

2
cos2

(
nπct

l
− εn

)
=

1

4
ρlω2

nc2
n cos2 (ωnt − εn) . (7.3.31)

Thus, the total energy of the nth normal mode of vibrations is given by

En = Kn + Vn =
1

4
ρl (ωncn)

2
= constant. (7.3.32)

For a given string oscillating in a normal mode, the total energy is pro-
portional to the square of the circular frequency and to the square of the
amplitude.

Finally, the total energy of the system is given by

E =

∞∑

n=1

En =
1

4
ρl

∞∑

n=1

ω2
nc2

n, (7.3.33)

which is constant because En = constant.

Example 7.3.1. The Plucked String of length l
As a special case of the problem just treated, consider a stretched string

fixed at both ends. Suppose the string is raised to a height h at x = a
and then released. The string will oscillate freely. The initial conditions, as
shown in Figure 7.3.2, may be written

u (x, 0) = f (x) =

⎧
⎨
⎩

hx/a, 0 ≤ x ≤ a

h (l − x) / (l − a) , a ≤ x ≤ l.

Since g (x) = 0, the coefficients bn are identically equal to zero. The coeffi-
cients an, according to equation (7.3.22a), are given by

an =
2

l

∫ l

0

f (x) sin
(nπx

l

)
dx

=
2

l

∫ a

0

hx

a
sin

(nπx

l

)
dx +

2

l

∫ l

a

h (l − x)

(l − a)
sin

(nπx

l

)
dx.

Integration and simplification yields

an =
2hl2

π2a (l − a)

1

n2
sin

(nπa

l

)
.

Thus, the displacement of the plucked string is

u (x, t) =
2hl2

π2a (l − a)

∞∑

n=1

1

n2
sin

(nπa

l

)
sin

(nπx

l

)
cos

(nπc

l

)
t.
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Figure 7.3.2 Plucked String

Example 7.3.2. The struck string of length l
Here, we consider the string with no initial displacement. Let the string

be struck at x = a so that the initial velocity is given by

ut (x, 0) =

⎧
⎨
⎩

v0

a x, 0 ≤ x ≤ a

v0 (l − x) / (l − a) , a ≤ x ≤ l
.

Since u (x, 0) = 0, we have an = 0. By applying equation (7.3.22b), we find
that

bn =
2

nπc

∫ a

0

v0

a
x sin

(nπx

l

)
dx +

2

nπc

∫ l

a

v0
(l − x)

(l − a)
sin

(nπx

l

)
dx

=
2v0l

3

π3ca (l − a)

1

n3
sin

(nπa

l

)
.

Hence, the displacement of the struck string is

u (x, t) =
2v0l

3

π3ca (l − a)

∞∑

n=1

1

n3
sin

(nπa

l

)
sin

(nπx

l

)
cos

(nπc

l

)
t.
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7.4 Existence and Uniqueness of Solution of the

Vibrating String Problem

In the preceding section we found that the initial boundary-value problem
(7.3.1)–(7.3.5) has a formal solution given by (7.3.18). We shall now show
that the expression (7.3.18) is the solution of the problem under certain
conditions.

First we see that

u1 (x, t) =

∞∑

n=1

an cos
(nπc

l
t
)

sin
(nπx

l

)
(7.4.1)

is the formal solution of the problem (7.3.1)–(7.3.5) with g (x) ≡ 0, and

u2 (x, t) =

∞∑

n=1

bn sin
(nπc

l
t
)

sin
(nπx

l

)
(7.4.2)

is the formal solution of the above problem with f (x) ≡ 0. By linearity of
the problem, the solution (7.3.18) may be considered as the sum of the two
formal solutions (7.4.1) and (7.4.2).

We first assume that f (x) and f ′ (x) are continuous on [0, l], and f (0) =
f (l) = 0. Then by Theorem 6.10.1, the series for the function f (x) given
by (7.3.20) converges absolutely and uniformly on the interval [0, l].

Using the trigonometric identity

sin
(nπx

l

)
cos

(nπc

l
t
)

=
1

2
sin

nπ

l
(x − ct) +

1

2
sin

nπ

l
(x + ct) , (7.4.3)

u1 (x, t) may be written as

u1 (x, t) =
1

2

∞∑

n=1

an sin
nπ

l
(x − ct) +

1

2

∞∑

n=1

an sin
nπ

l
(x + ct) .

Define

F (x) =

∞∑

n=1

an sin
(nπx

l

)
(7.4.4)

and assume that F (x) is the odd periodic extension of f (x), that is,

F (x) = f (x) 0 ≤ x ≤ l

F (−x) = −F (x) for all x

F (x+ 2l) = F (x) .

We can now rewrite u1 (x, t) in the form

u1 (x, t) =
1

2
[F (x − ct) + F (x + ct)] . (7.4.5)
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To show that the boundary conditions are satisfied, we note that

u1 (0, t) =
1

2
[F (−ct) + F (ct)]

=
1

2
[−F (ct) + F (ct)] = 0

u1 (l, t) =
1

2
[F (l − ct) + F (l + ct)]

=
1

2
[F (−l − ct) + F (l + ct)]

=
1

2
[−F (l + ct) + F (l + ct)] = 0.

Since

u1 (x, 0) =
1

2
[F (x) + F (x)]

= F (x) = f (x) , 0 ≤ x ≤ l,

we see that the initial condition u1 (x, 0) = f (x) is satisfied. Thus, equation
(7.3.1) and conditions (7.3.2)–(7.3.3) with g (x) ≡ 0 are satisfied. Since f ′

is continuous in [0, l], F ′ exists and is continuous for all x. Thus, if we
differentiate u1 (x, t) with respect to t, we obtain

∂u1

∂t
=

1

2
[−c F ′ (x − ct) + c F ′ (x + ct)] ,

and

∂u1

∂t
(x, 0) =

1

2
[−c F ′ (x) + c F ′ (x)] = 0.

We therefore see that initial condition (7.3.3) is also satisfied.
In order to show that u1 (x, t) satisfies the differential equation (7.3.1),

we impose additional restrictions on f . Let f ′′ be continuous on [0, l] and
f ′′ (0) = f ′′ (l) = 0. Then, F ′′ exists and is continuous everywhere, and
therefore,

∂2u1

∂t2
=

1

2
c2 [F ′′ (x − ct) + F ′′ (x + ct)] ,

∂2u1

∂x2
=

1

2
[F ′′ (x − ct) + F ′′ (x + ct)] .

We find therefore that

∂2u1

∂t2
= c2 ∂2u1

∂x2
.

Next, we shall state the assumptions which must be imposed on g to
make u2 (x, t) the solution of problem (7.3.1)–(7.3.5) with f (x) ≡ 0. Let g
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and g′ be continuous on [0, l] and let g (0) = g (l) = 0. Then the series for
the function g (x) given by (7.3.21) converges absolutely and uniformly in
the interval [0, l]. Introducing the new coefficients cn = (nπc/l) bn, we have

u2 (x, t) =

(
l

πc

) ∞∑

n=1

cn

n
sin

(nπc

l
t
)

sin
(nπx

l

)
. (7.4.6)

We shall see that term-by-term differentiation with respect to t is permitted,
and hence,

∂u2

∂t
=

∞∑

n=1

cn cos
(nπc

l
t
)

sin
(nπx

l

)
. (7.4.7)

Using the trigonometric identity (7.4.3), we obtain

∂u2

∂t
=

1

2

∞∑

n=1

cn sin
nπ

l
(x − ct) +

1

2

∞∑

n=1

cn sin
nπ

l
(x + ct) . (7.4.8)

These series are absolutely and uniformly convergent because of the as-
sumptions on g, and hence, the series (7.4.6) and (7.4.7) converge absolutely
and uniformly on [0, l]. Thus, the term-by-term differentiation is justified.

Let

G (x) =
∞∑

n=1

cn sin
(nπx

l

)

be the odd periodic extension of the function g (x). Then, equation (7.4.8)
can be written in the form

∂u2

∂t
=

1

2
[G (x − ct) + G (x + ct)] .

Integration yields

u2 (x, t) =
1

2

∫ t

0

G (x − ct′) dt′ +
1

2

∫ t

0

G (x + ct′) dt′

=
1

2c

∫ x+ct

x−ct

G (τ) dτ. (7.4.9)

It immediately follows that u2 (x, 0) = 0, and

∂u2

∂t
(x, 0) = G (x) = g (x) , 0 ≤ x ≤ l.

Moreover,

u2 (0, t) =
1

2

∫ t

0

G (−ct′) dt′ +
1

2

∫ t

0

G (ct′) dt′

= −1

2

∫ t

0

G (ct′) dt′ +
1

2

∫ t

0

G (ct′) dt′ = 0
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and

u2 (l, t) =
1

2

∫ t

0

G (l − ct′) dt′ +
1

2

∫ t

0

G (l + ct′) dt′

=
1

2

∫ t

0

G (−l − ct′) dt′ +
1

2

∫ t

0

G (l + ct′) dt′

= −1

2

∫ t

0

G (l + ct′) dt′ +
1

2

∫ t

0

G (l + ct′) dt′ = 0.

Finally, u2 (x, t) must satisfy the differential equation. Since g′ is continuous
on [0, l], G′ exists so that

∂2u2

∂t2
=

c

2
[−G′ (x − ct) + G′ (x + ct)] .

Differentiating u2 (x, t) represented by equation (7.4.6) with respect to x,
we obtain

∂u2

∂x
=

1

c

∞∑

n=1

cn sin
(nπc

l
t
)

cos
(nπx

l

)

=
1

2c

∞∑

n=1

cn

[
− sin

nπ

l
(x − ct) + sin

nπ

l
(x + ct)

]

=
1

2c
[−G (x − ct) + G (x + ct)] .

Differentiating again with respect to x, we obtain

∂2u2

∂x2
=

1

2c
[−G′ (x − ct) + G′ (x + ct)] .

It is quite evident that

∂2u2

∂t2
= c2 ∂2u2

∂x2
.

Thus, the solution of the initial boundary-value problem (7.3.1)–(7.3.5) is
established.

Theorem 7.4.2. (Uniqueness Theorem) There exists at most one so-
lution of the wave equation

utt = c2uxx, 0 < x < l, t > 0,

satisfying the initial conditions

u (x, 0) = f (x) , ut (x, 0) = g (x) , 0 ≤ x ≤ l,

and the boundary conditions

u (0, t) = 0, u (l, t) = 0, t ≥ 0,

where u (x, t) is a twice continuously differentiable function with respect to
both x and t.
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Proof. Suppose that there are two solutions u1 and u2 and let v = u1−u2.
It can readily be seen that v (x, t) is the solution of the problem

vtt = c2vxx, 0 < x < l, t > 0,

v (0, t) = 0, t ≥ 0,

v (l, t) = 0, t ≥ 0,

v (x, 0) = 0, 0 ≤ x ≤ l,

vt (x, 0) = 0, 0 ≤ x ≤ l.

We shall prove that the function v (x, t) is identically zero. To do so,
consider the energy integral

E (t) =
1

2

∫ l

0

(
c2v2

x + v2
t

)
dx (7.4.10)

which physically represents the total energy of the vibrating string at time
t.

Since the function v (x, t) is twice continuously differentiable, we differ-
entiate E (t) with respect to t. Thus,

dE

dt
=

∫ l

0

(
c2vxvxt + vtvtt

)
dx. (7.4.11)

Integrating the first integral in (7.4.11) by parts, we have

∫ l

0

c2vxvxtdx =
[
c2vxvt

]l

0
−

∫ l

0

c2vtvxxdx.

But from the condition v (0, t) = 0 we have vt (0, t) = 0, and similarly,
vt (l, t) = 0 for x = l. Hence, the expression in the square brackets vanishes,
and equation (7.4.11) becomes

dE

dt
=

∫ l

0

vt

(
vtt − c2vxx

)
dx. (7.4.12)

Since vtt − c2vxx = 0, equation (7.4.12) reduces to

dE

dt
= 0

which means

E (t) = constant = C.

Since v (x, 0) = 0 we have vx (x, 0) = 0. Taking into account the condi-
tion vt (x, 0) = 0, we evaluate C to obtain
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E (0) = C =
1

2

∫ l

0

[
c2v2

x + v2
t

]
t=0

dx = 0.

This implies that E (t) = 0 which can happen only when vx = 0 and vt = 0
for t > 0. To satisfy both of these conditions, we must have v (x, t) =
constant. Employing the condition v (x, 0) = 0, we then find v (x, t) = 0.
Therefore, u1 (x, t) = u2 (x, t) and the solution u (x, t) is unique.

7.5 The Heat Conduction Problem

We consider a homogeneous rod of length l. The rod is sufficiently thin
so that the heat is distributed equally over the cross section at time t.
The surface of the rod is insulated, and therefore, there is no heat loss
through the boundary. The temperature distribution of the rod is given by
the solution of the initial boundary-value problem

ut = kuxx, 0 < x < l, t > 0,

u (0, t) = 0, t ≥ 0,

u (l, t) = 0, t ≥ 0, (7.5.1)

u (x, 0) = f (x) , 0 ≤ x ≤ l.

If we assume a solution in the form

u (x, t) = X (x) T (t) �= 0.

Equation (7.5.1) yields

XT ′ = kX ′′T.

Thus, we have

X ′′

X
=

T ′

kT
= −α2,

where α is a positive constant. Hence, X and T must satisfy

X ′′ + α2X = 0, (7.5.2)

T ′ + α2kT = 0. (7.5.3)

From the boundary conditions, we have

u (0, t) = X (0) T (t) = 0, u (l, t) = X (l) T (t) = 0.

Thus,

X (0) = 0, X (l) = 0,

shekhaR
Highlight
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for an arbitrary function T (t). Hence, we must solve the eigenvalue problem

X ′′ + α2X = 0,

X (0) = 0, X (l) = 0.

The solution of equation (7.5.2) is

X (x) = A cos αx + B sin αx.

Since X (0) = 0, A = 0. To satisfy the second condition, we have

X (l) = B sin αl = 0.

Since B = 0 yields a trivial solution, we must have B �= 0 and hence,

sin αl = 0.

Thus,

α =
nπ

l
for n = 1, 2, 3 . . . .

Substituting these eigenvalues, we have

Xn (x) = Bn sin
(nπx

l

)
.

Next, we consider equation (7.5.3), namely,

T ′ + α2kT = 0,

the solution of which is

T (t) = Ce−α2kt.

Substituting α = (nπ/l), we have

Tn (t) = Cne−(nπ/l)2kt.

Hence, the nontrivial solution of the heat equation which satisfies the two
boundary conditions is

un (x, t) = Xn (x) Tn (t) = an e−(nπ/l)2kt sin
(nπx

l

)
, n = 1, 2, 3 . . . ,

where an = BnCn is an arbitrary constant.
By the principle of superposition, we obtain a formal series solution as

u (x, t) =

∞∑

n=1

un (x, t) ,

=

∞∑

n=1

an e−(nπ/l)2kt sin
(nπx

l

)
, (7.5.4)
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which satisfies the initial condition if

u (x, 0) = f (x) =

∞∑

n=1

an sin
(nπx

l

)
.

This holds true if f (x) can be represented by a Fourier sine series with
Fourier coefficients

an =
2

l

∫ l

0

f (x) sin
(nπx

l

)
dx. (7.5.5)

Hence,

u (x, t) =

∞∑

n=1

[
2

l

∫ l

0

f (τ) sin
(nπτ

l

)
dτ

]
e−(nπ/l)2kt sin

(nπx

l

)
(7.5.6)

is the formal series solution of the heat conduction problem.

Example 7.5.1. (a) Suppose the initial temperature distribution is f (x) =
x (l − x). Then, from equation (7.5.5), we have

an =
8l2

n3π3
, n = 1, 3, 5, . . . .

Thus, the solution is

u (x, t) =

(
8l2

π3

) ∞∑

n=1,3,5,...

1

n3
e−(nπ/l)2kt sin

(nπx

l

)
.

(b) Suppose the temperature at one end of the rod is held constant, that
is,

u (l, t) = u0, t ≥ 0.

The problem here is

ut = k uxx, 0 < x < l, t > 0,

u (0, t) = 0, u (l, t) = u0, (7.5.7)

u (x, 0) = f (x) , 0 < x < l.

Let

u (x, t) = v (x, t) +
u0x

l
.

Substitution of u (x, t) in equations (7.5.7) yields

vt = k vxx, 0 < x < l, t > 0,

v (0, t) = 0, v (l, t) = 0,

v (x, 0) = f (x) − u0x

l
, 0 < x < l.

shekhaR
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Hence, with the knowledge of solution (7.5.6), we obtain the solution

u (x, t) =
∞∑

n=1

[
2

l

∫ l

0

(
f (τ) − u0τ

l

)
sin

(nπτ

l

)
dτ

]
e−(nπ/l)2kt sin

(nπx

l

)

+
(u0x

l

)
. (7.5.8)

7.6 Existence and Uniqueness of Solution of the Heat

Conduction Problem

In the preceding section, we found that (7.5.4) is the formal solution of the
heat conduction problem (7.5.1), where an is given by (7.5.5).

We shall prove the existence of this formal solution if f (x) is continuous
in [0, l] and f (0) = f (l) = 0, and f ′ (x) is piecewise continuous in (0, l).
Since f (x) is bounded, we have

|an| =
2

l

∣∣∣∣∣

∫ l

0

f (x) sin
(nπx

l

)
dx

∣∣∣∣∣ ≤ 2

l

∫ l

0

|f (x)| dx ≤ C,

where C is a positive constant. Thus, for any finite t0 > 0,

∣∣∣an e−(nπ/l)2kt sin
(nπx

l

)∣∣∣ ≤ C e−(nπ/l)2kt0 when t ≥ t0.

According to the ratio test, the series of terms exp
[
− (nπ/l)

2
kt0

]
con-

verges. Hence, by the Weierstrass M-test, the series (7.5.4) converges uni-
formly with respect to x and t whenever t ≥ t0 and 0 ≤ x ≤ l.

Differentiating equation (7.5.4) termwise with respect to t, we obtain

ut = −
∞∑

n=1

an

(nπ

l

)2

k e−(nπ/l)2kt sin
(nπx

l

)
. (7.6.1)

We note that
∣∣∣∣−an

(nπ

l

)2

k e−(nπ/l)2kt sin
(nπx

l

)∣∣∣∣ ≤ C
(nπ

l

)2

k e−(nπ/l)2kt0

when t ≥ t0, and the series of terms C (nπ/l)
2
k exp

[
− (nπ/l)

2
kt0

]
con-

verges by the ratio test. Hence, equation (7.6.1) is uniformly convergent in
the region 0 ≤ x ≤ l, t ≥ t0. In a similar manner, the series (7.5.4) can be
differentiated twice with respect to x, and as a result

uxx = −
∞∑

n=1

an

(nπ

l

)2

e−(nπ/l)2kt sin
(nπx

l

)
. (7.6.2)
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Evidently, from equations (7.6.1) and (7.6.2),

ut = k uxx.

Hence, equation (7.5.4) is a solution of the one-dimensional heat equation
in the region 0 ≤ x ≤ l, t ≥ 0.

Next, we show that the boundary conditions are satisfied. Here, we note
that the series (7.5.4) representing the function u (x, t) converges uniformly
in the region 0 ≤ x ≤ l, t ≥ 0. Since the function represented by a uniformly
convergent series of continuous functions is continuous, u (x, t) is continuous
at x = 0 and x = l. As a consequence, when x = 0 and x = l, solution
(7.5.4) satisfies

u (0, t) = 0, u (l, t) = 0,

for all t > 0.
It remains to show that u (x, t) satisfies the initial condition

u (x, 0) = f (x) , 0 ≤ x ≤ l.

Under the assumptions stated earlier, the series for f (x) given by

f (x) =
∞∑

n=1

an sin
(nπx

l

)

is uniformly and absolutely convergent. By Abel’s test of convergence the
series formed by the product of the terms of a uniformly convergent series

∞∑

n=1

an sin
(nπx

l

)

and a uniformly bounded and monotone sequence exp
[
− (nπ/l)

2
kt

]
con-

verges uniformly with respect to t. Hence,

u (x, t) =

∞∑

n=1

an e−(nπ/l)2kt sin
(nπx

l

)

converges uniformly for 0 ≤ x ≤ l, t ≥ 0, and by the same reasoning as
before, u (x, t) is continuous for 0 ≤ x ≤ l, t ≥ 0. Thus, the initial condition

u (x, 0) = f (x) , 0 ≤ x ≤ l

is satisfied. The existence of solution is therefore established.
In the above discussion the condition imposed on f (x) is stronger than

necessary. The solution can be obtained with a less stringent condition on
f (x) (see Weinberger (1965)).
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Theorem 7.6.1. (Uniqueness Theorem) Let u (x, t) be a continuously
differentiable function. If u (x, t) satisfies the differential equation

ut = k uxx, 0 < x < l, t > 0,

the initial conditions

u (x, 0) = f (x) , 0 ≤ x ≤ l,

and the boundary conditions

u (0, t) = 0, u (l, t) = 0, t ≥ 0,

then, the solution is unique.

Proof. Suppose that there are two distinct solutions u1 (x, t) and u2 (x, t).
Let

v (x, t) = u1 (x, t) − u2 (x, t) .

Then,

vt = k vxx, 0 < x < l, t > 0,

v (0, t) = 0, v (l, t) = 0, t ≥ 0, (7.6.3)

v (x, 0) = 0, 0 ≤ x ≤ l,

Consider the function defined by the integral

J (t) =
1

2k

∫ l

0

v2dx.

Differentiating with respect to t, we have

J ′ (t) =
1

k

∫ l

0

vvtdx =

∫ l

0

vvxxdx,

by virtue of equation (7.6.3). Integrating by parts, we have

∫ l

0

vvxxdx = [vvx]
l
0 −

∫ l

0

v2
xdx.

Since v (0, t) = v (l, t) = 0,

J ′ (t) = −
∫ l

0

v2
x dx ≤ 0.

From the condition v (x, 0) = 0, we have J (0) = 0. This condition and
J ′ (t) ≤ 0 implies that J (t) is a nonincreasing function of t. Thus,
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J (t) ≤ 0.

But by definition of J (t),

J (t) ≥ 0.

Hence,

J (t) = 0, for t ≥ 0.

Since v (x, t) is continuous, J (t) = 0 implies

v (x, t) = 0

in 0 ≤ x ≤ l, t ≥ 0. Therefore, u1 = u2 and the solution is unique.

7.7 The Laplace and Beam Equations

Example 7.7.1. Consider the steady state temperature distribution in a thin
rectangular slab. Two sides are insulated, one side is maintained at zero
temperature, and the temperature of the remaining side is prescribed to be
f (x). Thus, we are required to solve

∇2u = 0, 0 < x < a, 0 < y < b,

u (x, 0) = f (x) , 0 ≤ x ≤ a,

u (x, b) = 0, 0 ≤ x ≤ a,

ux (0, y) = 0, ux (a, y) = 0.

Let u (x, y) = X (x) Y (y). Substitution of this into the Laplace equation
yields

X ′′ − λX = 0, Y ′′ + λX = 0.

Since the boundary conditions are homogeneous on x = 0 and x = a, we
have λ = −α2 with α ≥ 0 for nontrivial solutions of the eigenvalue problem

X ′′ + α2X = 0,

X ′ (0) = X ′ (a) = 0.

The solution is

X (x) = A cos αx + B sin αx.

Application of the boundary conditions then yields B = 0 and α = (nπ/a)
with n = 0, 1, 2, . . .. Hence,

Xn (x) = A cos
(nπx

a

)
.
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The solution of the Y equation is clearly

Y (y) = C cosh αy + D sinhαy

which can be written in the form

Y (y) = E sinhα (y + F ) ,

where E =
(
D2 − C2

) 1
2 and F =

[
tanh−1 (C/D)

]
/α.

Applying the homogeneous boundary condition Y (b) = 0, we obtain

Y (b) = E sinhα (b + F ) = 0

which implies

F = −b, E �= 0

for nontrivial solutions. Hence, we have

u (x, y) =
(b − y)

b

a0

2
+

∞∑

n=1

an cos
(nπx

a

)
sinh

{nπ

a
(y − b)

}
.

Now we apply the remaining nonhomogeneous condition to obtain

u (x, 0) = f (x) =
a0

2
+

∞∑

n=1

an cos
(nπx

a

)
sinh

(
−nπb

a

)
.

Since this is a Fourier cosine series, the coefficients are given by

a0 =
2

a

∫ a

0

f (x) dx,

an =
−2

a sinh
(

nπb
a

)
∫ a

0

f (x) cos
(nπx

a

)
dx, n = 1, 2, . . . .

Thus, the solution is

u (x, y) =

(
b − y

b

)
a0

2
+

∞∑

n=1

a∗
n

sinh nπ
a (b − y)

sinh nπb
a

cos
(nπx

a

)
,

where

a∗
n =

2

a

∫ a

0

f (x) cos
(nπx

a

)
dx.

If, for example f (x) = x in 0 < x < π, 0 < y < π, then we find (note that
a = π)

a0 = π, a∗
n =

2

πn2
[(−1)

n − 1] , n = 1, 2, . . .

and hence, the solution has the final form

u (x, y) =
1

2
(π − y) +

∞∑

n=1

2

πn2
[(−1)

n − 1]
sinhn (π − y)

sinhnπ
cos nx.
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Example 7.7.2. As another example, we consider the transverse vibration
of a beam. The equation of motion is governed by

utt + a2uxxxx = 0, 0 < x < l, t > 0,

where u (x, t) is the displacement and a is the physical constant. Note that
the equation is of the fourth order in x. Let the initial and boundary con-
ditions be

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = u (l, t) = 0, t > 0, (7.7.1)

uxx (0, t) = uxx (l, t) = 0, t > 0.

The boundary conditions represent the beam being simple supported, that
is, the displacements and the bending moments at the ends are zero.

Assume a nontrivial solution in the form

u (x, t) = X (x) T (t) ,

which transforms the equation of motion into the forms

T ′′ + a2α4T = 0, X(iv) − α4X = 0, α > 0.

The equation for X (x) has the general solution

X (x) = A cosh αx + B sinhαx + C cos αx + D sin αx.

The boundary conditions require that

X (0) = X (l) = 0, X ′′ (0) = X ′′ (l) = 0.

Differentiating X twice with respect to x, we obtain

X ′′ (x) = Aα2 cosh αx + Bα2 sinhαx − Cα2 cos αx − Dα2 sin αx.

Now applying the conditions X (0) = X ′′ (0) = 0, we obtain

A + C = 0, α2 (A − C) = 0,

and hence,

A = C = 0.

The conditions X (l) = X ′′ (l) = 0 yield

B sinhαl + D sin αl = 0,

B sinhαl − D sin αl = 0.
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These equations are satisfied if

B sinhαl = 0, D sin αl = 0.

Since sinhαl �= 0, B must vanish. For nontrivial solutions, D �= 0,

sin αl = 0,

and hence,

α =
(nπ

l

)
, n = 1, 2, 3, . . . .

We then obtain

Xn (x) = Dn sin
(nπx

l

)
.

The general solution for T (t) is

T (t) = E cos
(
aα2t

)
+ F sin

(
aα2t

)
.

Inserting the values of α2, we obtain

Tn (t) = En cos

{
a
(nπ

l

)2

t

}
+ Fn sin

{
a
(nπ

l

)2

t

}
.

Thus, the general solution for the transverse vibrations of a beam is

u (x, t) =
∞∑

n=1

[
an cos

{
a
(nπ

l

)2

t

}
+ bn sin

{
a
(nπ

l

)2

t

}]
sin

(nπx

l

)
.

(7.7.2)
To satisfy the initial condition u (x, 0) = f (x), we must have

u (x, 0) = f (x) =
∞∑

n=1

an sin
(nπx

l

)

from which we find

an =
2

l

∫ l

0

f (x) sin
(nπx

l

)
dx. (7.7.3)

Now the application of the second initial condition gives

ut (x, 0) = g (x) =

∞∑

n=1

bna
(nπ

l

)2

sin
(nπx

l

)

and hence,

bn =
2

al

(
l

nπ

)2 ∫ l

0

g (x) sin
(nπx

l

)
dx. (7.7.4)

Thus, the solution of the initial boundary-value problem is given by equa-
tions (7.7.2)–(7.7.4).
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7.8 Nonhomogeneous Problems

The partial differential equations considered so far in this chapter are homo-
geneous. In practice, there is a very important class of problems involving
nonhomogeneous equations. First, we shall illustrate a problem involving a
time-independent nonhomogeneous equations.

Example 7.8.1. Consider the initial boundary-value problem

utt = c2uxx + F (x) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l, (7.8.1)

u (0, t) = A, u (l, t) = B, t > 0.

We assume a solution in the form

u (x, t) = v (x, t) + U (x) .

Substitution of u (x, t) in equation (7.8.1) yields

vtt = c2 (vxx + Uxx) + F (x) ,

and if U (x) satisfies the equation

c2Uxx + F (x) = 0,

then v (x, t) satisfies the wave equation

vtt = c2vxx.

In a similar manner, if u (x, t) is inserted in the initial and boundary con-
ditions, we obtain

u (x, 0) = v (x, 0) + U (x) = f (x) ,

ut (x, 0) = vt (x, 0) = g (x) ,

u (0, t) = v (0, t) + U (0) = A,

u (l, t) = v (l, t) + U (l) = B .

Thus, if U (x) is the solution of the problem

c2Uxx + F = 0,

U (0) = A, U (l) = B,

then v (x, t) must satisfy

vtt = c2vxx,

v (x, 0) = f (x) − U (x) ,

vt (x, 0) = g (x) , (7.8.2)

v (0, t) = 0, v (l, t) = 0.
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Now v (x, t) can be solved easily since U (x) is known. It can be seen that

U (x) = A + (B − A)
x

l
+

x

l

∫ l

0

[
1

c2

∫ η

0

F (ξ) dξ

]
dη

−
∫ x

0

[
1

c2

∫ η

0

F (ξ) dξ

]
dη.

As a specific example, consider the problem

utt = c2uxx + h, h is a constant

u (x, 0) = 0, ut (x, 0) = 0, (7.8.3)

u (0, t) = 0, u (l, t) = 0.

Then, the solution of the system

c2Uxx + h = 0,

U (0) = 0, U (l) = 0,

is

U (x) =
h

2c2

(
lx − x2

)
.

The function v (x, t) must satisfy

vtt = c2vxx,

v (x, 0) = − h

2c2

(
lx − x2

)
, vt (x, 0) = 0,

v (0, t) = 0, v (l, t) = 0.

The solution is given (see Section 7.3 with g (x) = 0) by

v (x, t) =

∞∑

n=1

an cos
(nπc

l
t
)

sin
(nπx

l

)
,

and the coefficient is

an =
2

l

∫ l

0

[
− h

2c2

(
lx − x2

)]
sin

(nπx

l

)
dx

an = − 4l2h

n3π3c2
for n odd

an = 0 for n even.

The solution of the given initial boundary-value problem is, therefore, given
by
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u (x, t) = v (x, t) + U (x)

=
hx

2c2
(l − x) +

∞∑

n=1

(
− 4l2h

c2π3

)
cos (2n − 1) (πct/l)

(2n − 1)
3

× sin (2n − 1) (πx/l) . (7.8.4)

Let us now consider the problem of a finite string with an external force
acting on it. If the ends are fixed, we have

utt − c2uxx = h (x, t) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l, (7.8.5)

u (0, t) = 0, u (l, t) = 0, t ≥ 0.

We assume a solution involving the eigenfunctions, sin (nπx/l), of the as-
sociated eigenvalue problem in the form

u (x, t) =

∞∑

n=1

un (t) sin
(nπx

l

)
, (7.8.6)

where the functions un (t) are to be determined. It is evident that the
boundary conditions are satisfied. Let us also assume that

h (x, t) =

∞∑

n=1

hn (t) sin
(nπx

l

)
. (7.8.7)

Thus,

hn (t) =
2

l

∫ l

0

h (x, t) sin
(nπx

l

)
dx. (7.8.8)

We assume that the series (7.8.6) is convergent. We then find utt and
uxx from (7.8.6) and substitution of these values into (7.8.5) yields

∞∑

n=1

[
u′′

n (t) + λ2
n un (t)

]
sin

(nπx

l

)
=

∞∑

n=1

hn (t) sin
(nπx

l

)
,

where λn = (nπc/l). Multiplying both sides of this equation by sin (mπx/l),
where m = 1, 2, 3, . . ., and integrating from x = 0 to x = l, we obtain

u′′
n (t) + λ2

n un (t) = hn (t)

the solution of which is given by

un (t) = an cos λnt + bn sin λnt +
1

λn

∫ t

0

hn (τ) sin [λn (t − τ)] dτ. (7.8.9)
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Hence, the formal solution (7.8.6) takes the final form

u (x, t) =

∞∑

n=1

{
an cos λnt + bn sin λnt

+
1

λn

∫ t

0

hn (τ) sin [λn (t − τ)] dτ

}
· sin

(nπx

l

)
. (7.8.10)

Applying the initial conditions, we have

u (x, 0) = f (x) =
∞∑

n=1

an sin
(nπx

l

)
.

Thus,

an =
2

l

∫ l

0

f (x) sin
(nπx

l

)
dx. (7.8.11)

Similarly,

ut (x, 0) = g (x) =

∞∑

n=1

bnλn sin
(nπx

l

)
.

Thus,

bn =

(
2

lλn

)∫ l

0

g (x) sin
(nπx

l

)
dx. (7.8.12)

Hence, the formal solution of the initial boundary-value problem (7.8.5) is
given by (7.8.10) with an given by (7.8.11) and bn given by (7.8.12).

Example 7.8.2. Determine the solution of the initial boundary-value prob-
lem

utt − uxx = h, 0 < x < 1, t > 0, h = constant,

u (x, 0) = x (1 − x) , 0 ≤ x ≤ 1,

ut (x, 0) = 0, 0 ≤ x ≤ 1, (7.8.13)

u (0, t) = 0, u (1, t) = 0, t ≥ 0.

In this case, c = 1, λn = nπ, bn = 0 and an is given by

an = 2

∫ 1

0

x (1 − x) sinnπx dx =
4

(nπ)
3 [1 − (−1)

n
] .

We also have

hn = 2

∫ 1

0

h sin
(nπx

l

)
dx =

2h

nπ
[1 − (−1)

n
] .
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Hence, the integral term in (7.8.9) represents φn (t) given by

φn (t) =
1

λn

∫ t

0

hn (τ) sin [λn (t − τ)] dτ =
2h

nπλ2
n

[1 − (−1)
n
] (1 − cos λnt) .

The solution (7.8.10) is thus given by

u (x, t) =

∞∑

n=1

{
4

n3π3
[1 − (−1)

n
] cos nπt

+
2h

n3π3
[1 − (−1)

n
] (1 − cos nπt)

}
· sin nπx. (7.8.14)

We have treated the initial boundary-value problem with the fixed end
conditions. Problems with other boundary conditions can also be solved in
a similar manner.

We will now consider the initial boundary-value problem with time-
dependent boundary conditions, namely,

utt − uxx = h (x, t) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l, (7.8.15)

u (0, t) = p (t) , u (l, t) = q (t) , t ≥ 0.

We assume a solution in the form

u (x, t) = v (x, t) + U (x, t) . (7.8.16)

Substituting this into equation (7.8.15), we obtain

vtt − c2vxx = h − Utt + c2Uxx.

For the initial and boundary conditions, we have

v (x, 0) = f (x) − U (x, 0) ,

vt (x, 0) = g (x) − Ut (x, 0) ,

v (0, t) = p (t) − U (0, t) ,

v (l, t) = q (t) − U (l, t) .

In order to make the boundary conditions homogeneous, we set

U (0, t) = p (t) , U (l, t) = q (t) .

Thus, U (x, t) must take the form

U (x, t) = p (t) +
x

l
[q (t) − p (t)] . (7.8.17)
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The problem now is to find the function v (x, t) which satisfies

vtt − c2vxx = h − Utt = H (x, t) ,

v (x, 0) = f (x) − U (x, 0) = F (x) ,

vt (x, 0) = g (x) − Ut (x, 0) = G (x) , (7.8.18)

v (0, t) = 0, v (l, t) = 0.

This is the same type of problem as the one with homogeneous boundary
condition that has previously been treated.

Example 7.8.3. Find the solution of the problem

utt − uxx = h, 0 < x < 1, t > 0, h = constant,

u (x, 0) = x (1 − x) , 0 ≤ x ≤ 1,

ut (x, 0) = 0, 0 ≤ x ≤ 1, (7.8.19)

u (0, t) = t, u (1, t) = sin t, t ≥ 0.

In this case, we use (7.8.16) and (7.8.17) with c = 1 and λn = nπ so
that

u (x, t) = v (x, t) + U (x, t) , U (x, t) = t + x (sin t − t) . (7.8.20)

Then, v must satisfy

vtt − vxx = h + x sin t,

v (x, 0) = x (1 − x) ,

vt (x, 0) = −1, (7.8.21)

v (0, t) = 0, v (1, t) = 0.

It follows from (7.8.8) that

hn (t) = 2

∫ 1

0

(h + x sin t) sinnπx dx

=
2h

nπ
[1 − (−1)

n
] +

2 (−1)
n+1

nπ
sin t = a + b sin t (say). (7.8.22)

We also find

an = 2

∫ 1

0

x (1 − x) sinnπx dx =
4

(nπ)
3 [1 − (−1)

n
] ,

and

bn =
2

nπ

∫ 1

0

sin nπx dx =
2

(nπ)
2 [1 − (−1)

n
] .
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Then, we determine the integral term in (7.8.9) so that

φn (t) =
1

nπ

∫ t

0

(a + b sin τ) sin [nπ (t − τ)] dτ

=
1

nπ

{
a

nπ
(1 − cos nπt) +

b

4
[(sin 2t − 2t) cos nπt

− (cos 2t − 1) sin nπt]

}
. (7.8.23)

Hence, the solution of the problem (7.8.21) is

v (x, t) =
∞∑

n=1

[an cos nπt + bn sin nπt + φn (t)] sinnπx. (7.8.24)

Thus, the solution of problem (7.8.19) is given by

u (x, t) = v (x, t) + U (x, t) ,

where v (x, t) is given by (7.8.24) and U (x, t) is given by (7.8.20)

Example 7.8.4. Use the method of separation of variables to derive the Her-
mite equation from the Fokker–Planck equation of nonequilibrium statistical
mechanics

ut − uxx = (x u)x . (7.8.25)

We seek a nontrivial separable solution u (x, t) = X (x) T (t) so that
equation (7.8.25) reduces to a pair of ordinary differential equations

X ′′ + xX ′ + (1 + n) X = 0 and T ′ + nT = 0, (7.8.26ab)

where (−n) is a separation constant.
We next use

X (x) = exp

(
−1

2
x2

)
f (x) (7.8.27)

and rescale the independent variable to obtain the Hermite equation for f
in the form

d2f

dξ2
− 2ξ

df

dξ
+ 2nf = 0.

The solution of (7.8.26b) gives

T (t) = cn exp (−nt) , (7.8.28)

where the coefficients cn are constants.
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Thus, the solution of the Fokker–Planck equation is given by

u (x, t) =
∞∑

n=1

an exp

(
−nt − 1

2
x2

)
Hn

(
x√
2

)
, (7.8.29)

where Hn is the Hermite function and an are arbitrary constants to be
determined from the given initial condition

u (x, 0) = f (x) . (7.8.30)

We make the change of variables

ξ = x et and u = etv, (7.8.31)

in equation (7.8.25). Consequently, equation (7.8.25) becomes

∂v

∂t
= e2t ∂2v

∂ξ2
. (7.8.32)

Making another change of variable t to τ (t), we transform (7.8.32) into the
linear diffusion equation

∂v

∂τ
=

∂2v

∂ξ2
. (7.8.33)

Finally, we note that the asymptotic behavior of the solution u (x, t) as
t → ∞ is of special interest. The reader is referred to Reif (1965) for such
behavior.

7.9 Exercises

1. Solve the following initial boundary-value problems:

(a) utt = c2uxx, 0 < x < 1, t > 0,

u (x, 0) = x (1 − x), ut (x, 0) = 0, 0 ≤ x ≤ 1,

u (0, t) = u (1, t) = 0, t > 0.

(b) utt = c2uxx, 0 < x < π, t > 0,

u (x, 0) = 3 sinx, ut (x, 0) = 0, 0 ≤ x ≤ π,

u (0, t) = u (1, t) = 0, t > 0.
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2. Determine the solutions of the following initial boundary-value prob-
lems:

(a) utt = c2uxx, 0 < x < π, t > 0,

u (x, 0) = 0, ut (x, 0) = 8 sin2 x, 0 ≤ x ≤ π,

u (0, t) = u (π, t) = 0, t > 0.

(b) utt = c2uxx = 0, 0 < x < 1, t > 0,

u (x, 0) = 0, ut (x, 0) = x sin πx, 0 ≤ x ≤ 1,

u (0, t) = u (1, t) = 0, t > 0.

3. Find the solution of each of the following problems:

(a) utt = c2uxx = 0, 0 < x < 1, t > 0,

u (x, 0) = x (1 − x), ut (x, 0) = x − tan πx
4 , 0 ≤ x ≤ 1,

u (0, t) = u (π, t) = 0, t > 0.

(b) utt = c2uxx = 0, 0 < x < π, t > 0,

u (x, 0) = sinx, ut (x, 0) = x2 − πx, 0 ≤ x ≤ π,

u (0, t) = u (π, t) = 0, t > 0.

4. Solve the following problems:

(a) utt = c2uxx = 0, 0 < x < π, t > 0,

u (x, 0) = x + sin x, ut (x, 0) = 0, 0 ≤ x ≤ π,

u (0, t) = ux (π, t) = 0, t > 0.

(b) utt = c2uxx = 0, 0 < x < π, t > 0,

u (x, 0) = cos x, ut (x, 0) = 0, 0 ≤ x ≤ π,

ux (0, t) = 0, ux (π, t) = 0, t > 0.
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5. By the method of separation of variables, solve the telegraph equation:

utt + aut + bu = c2uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , ut (x, 0) = 0,

u (0, t) = u (l, t) = 0, t > 0.

6. Obtain the solution of the damped wave motion problem:

utt + aut = c2uxx, 0 < x < l, t > 0,

u (x, 0) = 0, ut (x, 0) = g (x) ,

u (0, t) = u (l, t) = 0.

7. The torsional oscillation of a shaft of circular cross section is governed
by the partial differential equation

θtt = a2θxx,

where θ (x, t) is the angular displacement of the cross section and a is
a physical constant. The ends of the shaft are fixed elastically, that is,

θx (0, t) − h θ (0, t) = 0, θx (l, t) + h θ (l, t) = 0.

Determine the angular displacement if the initial angular displacement
is f (x).

8. Solve the initial boundary-value problem of the longitudinal vibration
of a truncated cone of length l and base of radius a. The equation of
motion is given by

(
1 − x

h

)2 ∂2u

∂t2
= c2 ∂

∂x

[(
1 − x

h

)2 ∂u

∂x

]
, 0 < x < l, t > 0,

where c2 = (E/ρ), E is the elastic modulus, ρ is the density of the
material and h = la/ (a − l). The two ends are rigidly fixed. If the
initial displacement is f (x), that is, u (x, 0) = f (x), find u (x, t).

9. Establish the validity of the formal solution of the initial boundary-
value problems:

utt = c2uxx, 0 < x < π, t > 0,

u (x, 0) = f (x) , ut (x, 0) = g (x) , 0 ≤ x ≤ π,

ux (0, t) = 0, ux (π, t) = 0, t > 0.

10. Prove the uniqueness of the solution of the initial boundary-value prob-
lem:

utt = c2uxx, 0 < x < π, t > 0,

u (x, 0) = f (x) , ut (x, 0) = g (x) , 0 ≤ x ≤ π,

ux (0, t) = 0, ux (π, t) = 0, t > 0.
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11. Determine the solution of

utt = c2uxx + A sinhx, 0 < x < l, t > 0,

u (x, 0) = 0, ut (x, 0) = 0, 0 ≤ x ≤ l,

u (0, t) = h, u (l, t) = k, t > 0,

where h, k, and A are constants.
12. Solve the problem:

utt = c2uxx + Ax, 0 < x < 1, t > 0, A = constant,

u (x, 0) = 0, ut (x, 0) = 0, 0 ≤ x ≤ 1,

u (0, t) = 0, u (1, t) = 0, t > 0.

13. Solve the problem:

utt = c2uxx + x2, 0 < x < 1, t > 0,

u (x, 0) = x, ut (x, 0) = 0, 0 ≤ x ≤ 1,

u (0, t) = 0, u (1, t) = 1, t ≥ 0.

14. Find the solution of the following problems:

(a) ut = kuxx + h, 0 < x < 1, t > 0, h = constant,

u (x, 0) = u0 (1 − cos πx) , 0 ≤ x ≤ 1, u0 = constant,

u (0, t) = 0, u (l, t) = 2u0, t ≥ 0.

(b) ut = kuxx − hu, 0 < x < l, t > 0, h = constant,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ux (0, t) = ux (l, t) = 0, t > 0.

15. Obtain the solution of each of the following initial boundary-value prob-
lems:

(a) ut = 4uxx, 0 < x < 1, t > 0,

u (x, 0) = x2 (1 − x), 0 ≤ x ≤ 1,

u (0, t) = 0, u (l, t) = 0, t ≥ 0.

(b) ut = k uxx, 0 < x < π, t > 0,

u (x, 0) = sin2 x, 0 ≤ x ≤ π,

u (0, t) = 0, u (π, t) = 0, t ≥ 0.
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(c) ut = uxx, 0 < x < 2, t > 0,

u (x, 0) = x, 0 ≤ x ≤ 2,

u (0, t) = 0, ux (2, t) = 1, t ≥ 0.

(d) ut = k uxx, 0 < x < l, t > 0,

u (x, 0) = sin (πx/2l), 0 ≤ x ≤ l,

u (0, t) = 0, u (l, t) = 1, t ≥ 0.

16. Find the temperature distribution in a rod of length l. The faces are
insulated, and the initial temperature distribution is given by x (l − x).

17. Find the temperature distribution in a rod of length π, one end of which
is kept at zero temperature and the other end of which loses heat at
a rate proportional to the temperature at that end x = π. The initial
temperature distribution is given by f (x) = x.

18. The voltage distribution in an electric transmission line is given by

vt = k vxx, 0 < x < l, t > 0.

A voltage equal to zero is maintained at x = l, while at the end x = 0,
the voltage varies according to the law

v (0, t) = Ct, t > 0,

where C is a constant. Find v (x, t) if the initial voltage distribution is
zero.

19. Establish the validity of the formal solution of the initial boundary-
value problem:

ut = k uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

u (0, t) = 0, ux (l, t) = 0, t ≥ 0.

20. Prove the uniqueness of the solution of the problem:

ut = k uxx, 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ux (0, t) = 0, ux (l, t) = 0, t ≥ 0.
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21. Solve the radioactive decay problem:

ut − k uxx = Ae−ax, 0 < x < π, t > 0,

u (x, 0) = sinx, 0 ≤ x ≤ π,

u (0, t) = 0, u (π, t) = 0, t ≥ 0.

22. Determine the solution of the initial boundary-value problem:

ut − k uxx = h (x, t) , 0 < x < l, t > 0, k = constant,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

u (0, t) = p (t) , u (l, t) = q (t) , t ≥ 0.

23. Determine the solution of the initial boundary-value problem:

ut − k uxx = h (x, t) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

u (0, t) = p (t) , ux (l, t) = q (t) , t ≥ 0.

24. Solve the problem:

ut − k uxx = 0, 0 < x < 1, t > 0,

u (x, 0) = x (1 − x) , 0 ≤ x ≤ 1,

u (0, t) = t, u (1, t) = sin t, t ≥ 0.

25. Solve the problem:

ut − 4uxx = xt, 0 < x < 1, t ≥ 0,

u (x, 0) = sinπx, 0 ≤ x ≤ 1,

u (0, t) = t, u (1, t) = t2, t ≥ 0.

26. Solve the problem:

ut − k uxx = x cos t, 0 < x < π, t > 0,

u (x, 0) = sinx, 0 ≤ x ≤ π,

u (0, t) = t2, u (π, t) = 2t, t ≥ 0.

27. Solve the problem:

ut − uxx = 2x2t, 0 < x < 1, t > 0,

u (x, 0) = cos (3πx/2) , 0 ≤ x ≤ 1,

u (0, t) = 1, ux (1, t) =
3π

2
, t ≥ 0.

28. Solve the problem:

ut − 2 uxx = h, 0 < x < 1, t > 0, h = constant,

u (x, 0) = x, 0 ≤ x ≤ 1,

u (0, t) = sin t, ux (1, t) + u (1, t) = 2, t ≥ 0.
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29. Determine the solution of the initial boundary-value problem:

utt − c2uxx = h (x, t) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

u (0, t) = p (t) , ux (l, t) = q (t) , t ≥ 0.

30. Determine the solution of the initial boundary-value problem:

utt − c2uxx = h (x, t) , 0 < x < l, t > 0,

u (x, 0) = f (x) , 0 ≤ x ≤ l,

ut (x, 0) = g (x) , 0 ≤ x ≤ l,

ux (0, t) = p (t) , ux (l, t) = q (t) , t ≥ 0.

31. Solve the problem:

utt − uxx = 0, 0 < x < 1, t > 0,

u (x, 0) = x, ut (x, 0) = 0, 0 ≤ x ≤ 1,

u (0, t) = t2, u (1, t) = cos t, t ≥ 0.

32. Solve the problem:

utt − 4 uxx = xt, 0 < x < 1, t > 0,

u (x, 0) = x, ut (x, 0) = 0, 0 ≤ x ≤ 1,

u (0, t) = 0, ux (1, t) = 1 + t, t ≥ 0.

33. Solve the problem:

utt − 9 uxx = 0, 0 < x < 1, t > 0,

u (x, 0) = sin
(πx

2

)
, ut (x, 0) = 1 + x, 0 ≤ x ≤ 1,

ux (0, t) = π/2, ux (1, t) = 0, t ≥ 0.

34. Find the solution of the problem:

utt + 2k ut − c2uxx = 0, 0 < x < l, t > 0,

u (x, 0) = 0, ut (x, 0) = 0, 0 ≤ x ≤ l,

ux (0, t) = 0, u (l, t) = h, t ≥ 0, h = constant.

35. Solve the problem:

ut − c2uxx + hu = hu0, −π < x < π, t > 0,

u (x, 0) = f (x) , −π ≤ x ≤ π,

u (−π, t) = u (π, t) , ux (−π, t) = ux (π, t) , t ≥ 0,

where h and u0 are constants.
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36. Prove the uniqueness theorem for the boundary-value problem involving
the Laplace equation:

uxx + uyy = 0, 0 < x < a, 0 < y < b,

u (x, 0) = f (x) , u (x, b) = 0, 0 ≤ x ≤ a,

ux (0, y) = 0 = ux (a, y) , 0 ≤ y ≤ b.

37. Consider the telegraph equation problem:

utt − c2uxx + aut + bu = 0, 0 < x < l, t > 0,

u (x, 0) = f (x) , ut (x, 0) = g (x) for 0 ≤ x ≤ l,

u (0, t) = 0 = u (l, t) for t ≥ 0,

where a and b are positive constants.

(a) Show that, for any T > 0,

∫ l

0

(
u2

t + c2u2
x + bu2

)
t=T

dx ≤
∫ l

0

(
u2

t + c2u2
x + bu2

)
t=0

dx.

(b) Use the above integral inequality from (a) to show that the initial
boundary-value problem for the telegraph equation can have only one
solution.




