DATA MINING LECTURE NOTES-2

BSc.(H) Computer Science: VI Semester

Teacher: Ms. Sonal Linda

CLUSTERING

What is a Clustering?

 In general a grouping of objects such that the objects in a group (cluster) are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering

DBSCAN

HIERARCHICAL CLUSTERING

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps, we have some clusters

Proximity Matrix

Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and

p2

C1 C2 C3 C4 C5

p9

p10

p11

p12

update the proximity matrix.

After Merging

The question is "How do we update the proximity matrix?"

			C2		
	ı		U		
		C1	C 5	C3	C4
	<u>C1</u>		?		
C2 U	C5	?	?	?	?
	C 3		?		
	<u>C</u> 4		?		

	p1	p2	рЗ	p4	р5	<u>.</u>
p1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
р4 р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	р5	<u>.</u>
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
<u>p4</u> <u>p5</u>						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	p5	
<u>p1</u>						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
p4 p5						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	p5	<u> </u>
<u>p1</u>						
<u>p2</u>						_
<u>p2</u> <u>p3</u>						
р4 р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	p5	<u> </u>
<u>p</u> 1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
p4						
р4 р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Single Link – Complete Link

- Another way to view the processing of the hierarchical algorithm is that we create links between their elements in order of increasing distance
 - The MIN Single Link, will merge two clusters when a single pair of elements is linked
 - The MAX Complete Linkage will merge two clusters when all pairs of elements have been linked.

Hierarchical Clustering: MIN

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Nested Clusters

Dendrogram

Strength of MIN

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of MIN

Original Points

Two Clusters

Sensitive to noise and outliers

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Strength of MAX

Original Points

Two Clusters

• Less susceptible to noise and outliers

Limitations of MAX

Original Points

Two Clusters

- Tends to break large clusters
- •Biased towards globular clusters

Cluster Similarity: Group Average

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}}}{|Cluster_{i}| * |Cluster_{i}|}$$

 Need to use average connectivity for scalability since total proximity favors large clusters

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

	1	2	3	4	5	6
1	0	.24	.22	.37	.34	.23
2	.24	0	.15	.20	.14	.25
3	.22	.15	0	.15	.28	.11
4	.37	.20	.15	0	.29	.22
5	.34	.14	.28	.29	0	.39
6	.23	.25	.11	.22	.39	0

Hierarchical Clustering: Group Average

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

- Similarity of two clusters is based on the increase in squared error (SSE) when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering: Problems and Limitations

- Computational complexity in time and space
- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters