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CLUSTERING




What Is a Clustering?

In general a grouping of objects such that the objects in a
group (cluster) are similar (or related) to one another and
different from (or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized

minimized @




-
Clustering Algorithms

- K-means and Its variants

- Hierarchical clustering

- DBSCAN



HIERARCHICAL
CLUSTERING




Hierarchical Clustering

Two main types of hierarchical clustering

- Agglomerative:
Start with the points as individual clusters

At each step, merge the closest pair of clusters until only one cluster (or
k clusters) left

« Divisive:
Start with one, all-inclusive cluster

At each step, split a cluster until each cluster contains a point (or there
are k clusters)

Traditional hierarchical algorithms use a similarity or
distance matrix
- Merge or split one cluster at a time



Hierarchical Clustering

Produces a set of nested clusters organized as a
hierarchical tree
Can be visualized as a dendrogram

- Atree like diagram that records the sequences of
merges or splits
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Strengths of Hierarchical Clustering

Do not have to assume any particular number of
clusters

- Any desired number of clusters can be obtained by
‘cutting’ the dendogram at the proper level

They may correspond to meaningful taxonomies

- Example in biological sciences (e.g., animal kingdom,
phylogeny reconstruction, ...)



-
Agglomerative Clustering Algorithm

More popular hierarchical clustering technique

Basic algorithm is straightforward

1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters
5 Update the proximity matrix

6. Until only a single cluster remains

Key operation is the computation of the proximity
of two clusters

Different approaches to defining the distance between
clusters distinguish the different algorithms



-
Starting Situation

- Start with clusters of individual points and a
proximity matrix
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Intermediate Situation

- After some merging steps, we have some clusters
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Intermediate Situation

We want to merge the two closest clusters (C2 and C5) and

update the proximity matrix.
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After Merging

The question is “How do we update the proximity matrix?”
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How to Define Inter-Cluster Similarity
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Group Average

Distance Between Centroids

Other methods driven by an objective
function
— Ward’'s Method uses squared error

Proximity Matrix




-
How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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-
Single Link — Complete Link

Another way to view the processing of the
hierarchical algorithm is that we create links
between their elements in order of increasing
distance

- The MIN — Single Link, will merge two clusters when a
single pair of elements is linked

- The MAX — Complete Linkage will merge two clusters
when all pairs of elements have been linked.



Hierarchical Clustering: MIN
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Strength of MIN
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« Can handle non-elliptical shapes
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Limitations of MIN
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» Sensitive to noise and outliers



Hierarchical Clustering: MAX
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-
Strength of MAX
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* Less susceptible to noise and outliers
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Limitations of MAX
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*Tends to break large clusters

*Biased towards globular clusters
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Cluster Similarity: Group Average

Proximity of two clusters is the average of pairwise proximity

between points in the two clusters. o
Y proximity(p;, p;)

p;cCluster;
pj<cCluster;

| Cluster; | «| Cluster; |

proximity(Cluster,, Cluster;) =

Need to use average connectivity for scalability since total
proximity favors large clusters

1112131 4]5]6
W o 24 22 37 34 23
24 0 15 20 .14 25
22 15 0 .15 28 .11
37 20 15 0 29 .22
34 14 28 29 0 .39
BN 23 25 11 22 39 0

HH



Hierarchical Clustering: Group Average
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Hierarchical Clustering: Group Average

Compromise between Single and
Complete Link

Strengths
Less susceptible to noise and outliers

Limitations
Biased towards globular clusters



-
Cluster Similarity: Ward’s Method

Similarity of two clusters is based on the increase
In squared error (SSE) when two clusters are
merged

- Similar to group average if distance between points is
distance squared
Less susceptible to noise and outliers

Biased towards globular clusters

Hierarchical analogue of K-means
- Can be used to initialize K-means



Hierarchical Clustering: Comparison

Ward’s Method

Group Average




Hierarchical Clustering:
Time and Space reguirements

O(N?) space since it uses the proximity matrix.
- N is the number of points.

O(N?3) time in many cases
- There are N steps and at each step the size, N2,
proximity matrix must be updated and searched

- Complexity can be reduced to O(N? log(N) ) time for
some approaches



Hierarchical Clustering:
Problems and Limitations

Computational complexity in time and space

Once a decision Is made to combine two clusters, it
cannot be undone

No objective function is directly minimized

Different schemes have problems with one or more of
the following:

- Sensitivity to noise and outliers

- Difficulty handling different sized clusters and convex shapes
- Breaking large clusters



