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We have discussed about Lagrange’s form and Newton’s forms Interpola-
tions in the class which was held previously however:

1 NEWTON INTERPOLATING POLYNO-
MIAL

1.1 Linear

P(z) = ag+ (z — xo)ay (1)

where ag and a; are arbitrary constants, which satisfy the conditions f(zg) =
P(zo) & f(x1) = P(x1). We have

P(z0) = f(x0) = ao + (zo — 20)ar = f(x0) = ao
and

Pla) = f(1) = f(ao) + (21 — mo)ay = L =T @)

xr1 — To
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So by eliminating ay and a; from equation (), the Newton’s linear-interpolation
formula:

P(x) = f(xo) + (z — 20) f 20, 1] (2)
where
flan,m] = L= S0)

1.2 Quadratic Interpolation

P(x) = ap + (z — zo)ay + (z — z0)(z — z1)ay (3)

where ag, a; & a3 are arbitrary constants, which satisfy the conditions
f(zo) = P(xo), f(x1) = P(x1) & f(xg) = P(x2). We have

P(Io) = f(xo) = ap + (36’0 - xo)al + (36’0 - xo)(Io - 36’1)@2 = f(Io) = Qo
P(x1) = f(x1) = f(xo) + (21 — xo)ar + (x1 — z0) (21 — x1)as
- f(xl) - f(!lﬁ'()) —aq, = f[xouxl]
Ir1 — X
and
P($2) = f(%) = f(xo) + (551 - xo)f[xo, 371] + (56’2 - xo)(ﬁfz - 56’1)@2
. fen)=flos) _ fa)=floo) g, Sl = Sl ] Flro. 1. 1]

T2 — Zo T2 — To
So by eliminating ag, a; and as from equation (3)), the Newton’s Quadratic-
interpolation formula:

P(z) = f(zo) + (x — xo) flwo, 1] + (x — x0)(x—1) @0, 21, 72] (4)

1.3 General Form of Newton’s Interpolating Polyno-
mials

P(x) = ap+(z—x0)ar1+(x—x0) (x—21)as+- - -+ (z—x0) (x—21 ) (x—22) - - - (T—2p—1)
()
flzy, @2, @il — flzo, 21, %ia]
Ti—I0

where a; = f[anxla e axi] and f[l’(),l’l, U >xi] =
Also construct Newton’s divided difference table.



Table 1: Divided Difference Table
1st divided difference | 2nd divided difference | 3rd divided difference
zo | flzo]
vy | flz] flwo, 71
Ty | flao] flr1, 20 flro, 21,2 ]
w3 | flws) flwa, x5 flry, 22,3 ] flxo, 21, T2, w3

Note: Kindly do some examples.

2 LAGRANGE INTERPOLATING POLYNO-
MIAL

2.1 Linear

A linear polynomial
P(z) =ao+ arx

where ag and a; are arbitrary constants, which satisfy the conditions f(xy) =
P(xg) & f(x1) = P(z1). So by eliminating ag and a; from above equation
we have,

P(x) = Lo(z) f(x0) + La(x) f (21) (6)
where Lo(z) = 2=2- & Li(z) = =2

2.2 Quadratic

Similarly
A linear polynomial
P(z) = ap + a1z + g’

where ag, a; and as are arbitrary constants, which satisfy the conditions
f(zo) = P(zo), f(x1)=P(x1) & f(x2) = P(z2). So by eliminating ay,
a1 and ay from above equation we have,

P(x) = Lo(z) f(z0) + Li(x) f(x1) + Lo() f(22) (7)

where Lo(z) = =mleoea) oy () = Lowolema) g g () = Lezmollemn)

" (zo—x1)(wo—ux2)’ (x1—z0)(z1—22) (x2—z0)(T2—71)
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2.3 General Form of Lagrange’s Interpolating Polyno-
mials

P(x) = Lo(x) f(wo) + Li(x) f(x1) + Lo(x) f(22) + - - + Ly(2) f (7)) (8)

where

(# —mo)(x —a1) - (& — @i1) (@ — Tiga) -+ (& — @)
(zi — xo)(wi — 1) - (T — T ) (@5 — Tir) - (27 — )

Note: Kindly do some examples.

3 FINITE DIFFERENCE OPERATORS

Let there be a closed interval [a, b] and it is divided into n equal sub-intervals

such as; a = x9g < 11 < 29 < --- < x, = b. Let h be the length of each

sub-interval, so h = b_T“

Now a =z, v1 =a+h =29+ h =121, 9 = 290+ 2h =29, -+, T; =
o+ th=z1, - zpo=290+nh=0>
Definitions:

Shift Operator
Ef(z;) = flzi+ h) = f(zin)

Forward Difference Operator

Af(x;) = f(xi+h) — flzi) = f(@ig1) — f(xi)

Backward Difference Operator

V()= flzi) = flwi —h) = f(z;) = fl@iz1)



Central Difference Operator

) = flait By = a2y
Average Operator
ufw) =3 et D+ s

Relationships between operators:

E" f(x;) = f(zi + mh)
Af(x;) = frith)=f(x;) = Ef(x;)—f(x;) = (E=1) f(2;)
= A=F—1;
Vf(xi) = f(x:) = flzi—h) = flz) — B~ f(a)

5f(x2)_f($z+§)_f($z_§):E f(xl)_E 2f(37l)
—~ §=Fz_ E1

and ]
p=y (BB

Note: e Kindly read reference book [1] page no. 230,
231, 232,233, 234, 235, 236 & 237. Also do the exercise
question based on example 4.12

e Kindly solve the example 4.15 and at least one exercise
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question based on example 4.15 using Gregory-Newton
Forward (and backward) Difference Interpolation.

e [ will attached the pics of these pages. Any doubt you
people ask by phone or whats app or by email. Rest of
reading material will be send soon. Thanks
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