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CLUSTERING




What Is a Clustering?

In general a grouping of objects such that the objects in a
group (cluster) are similar (or related) to one another and
different from (or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized

minimized @




-
Applications of Cluster Analysis

Discovered Clusters Industry Group

Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,

1 Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,

f DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,

N OI’ Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down,
Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,

brOWSIﬂg, Sun-DOWN
that have similar
functionality, or

. . . . . Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,
with similar price fluctuations MBNA-Corp-DOWN, Morgan-Stanley-DOWN Financial-DOWN

- Understanding

Technologyl-DOWN

- Summarization

- Reduce the size of large data
sets

Clustering precipitation
in Australia



Early applications of cluster analysis

- John Snow, London 1854
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Figure 1.1: Plotting cholera cases on a map of London




Notion of a Cluster can be Ambiguous
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Types of Clusterings

A clustering Is a set of clusters

mportant distinction between hierarchical and
nartitional sets of clusters

Partitional Clustering

- A division data objects into subsets (clusters) such
that each data object is in exactly one subset

Hierarchical clustering

- A set of nested clusters organized as a hierarchical
tree



Partitional Clustering

Original Points A Patrtitional Clustering



Hierarchical Clustering

Traditional Hierarchical
Clustering

Non-traditional Hierarchical
Clustering

B

pl p2 p3 p4

Traditional Dendrogram

I

pl p2  p3 p4

Non-traditional Dendrogram
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Other types of clustering

Exclusive (or non-overlapping) versus non-
exclusive (or overlapping)

- In non-exclusive clusterings, points may belong to
multiple clusters.

Points that belong to multiple classes, or ‘border’ points

Fuzzy (or soft) versus non-fuzzy (or hard)

- In fuzzy clustering, a point belongs to every cluster
with some weight between 0 and 1
Weights usually must sum to 1 (often interpreted as probabilities)

Partial versus complete

° hn some cases, we only want to cluster some of the
ata



Types of Clusters: Well-Separated

- Well-Separated Clusters:

- Acluster is a set of points such that any point in a cluster is
closer (or more similar) to every other point in the cluster than
to any point not in the cluster.

3 well-separated clusters



Types of Clusters: Center-Based

- Center-based

A cluster is a set of objects such that an object in a cluster is
closer (more similar) to the “center” of a cluster, than to the
center of any other cluster

The center of a cluster is often a centroid, the minimizer of
distances from all the points in the cluster, or a medoid, the
most “representative” point of a cluster

4 center-based clusters



Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or

Transitive)

- Acluster is a set of points such that a point in a cluster is
closer (or more similar) to one or more other points in the
cluster than to any point not in the cluster.

8 contiguous clusters
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Types of Clusters: Density-Based

- Density-based

- Acluster is a dense region of points, which is separated by
low-density regions, from other regions of high density.

Used when the clusters are irregular or intertwined, and when
noise and outliers are present.

6 density-based clusters
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Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters

- Finds clusters that share some common property or represent
a particular concept.

2 Overlapping Circles



Types of Clusters: Objective Function

Clustering as an optimization problem
- Finds clusters that minimize or maximize an objective function.

- Enumerate all possible ways of dividing the points into clusters
and evaluate the goodness' of each potential set of clusters by
using the given objective function. (NP Hard)

- Can have global or local objectives.
Hierarchical clustering algorithms typically have local objectives
Partitional algorithms typically have global objectives
- A variation of the global objective function approach is to fit the
data to a parameterized model.

The parameters for the model are determined from the data, and they
determine the clustering

E.g., Mixture models assume that the data is a ‘mixture' of a number
of statistical distributions.
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Clustering Algorithms

- K-means and Its variants

- Hierarchical clustering

- DBSCAN



K-MEANS




K-means Clustering

Partitional clustering approach

Each cluster is associated with a centroid
(center point)

Each point is assigned to the cluster with the
closest centroid

Number of clusters, K, must be specified

The objective Is to minimize the sum of
distances of the points to their respective
centroid



K-means Clustering

Problem: Given a set X of n points in a d-
dimensional space and an integer K group the

points into K clusters C={C,, C,,...,C,} such that
k

Cost(C) = Z Z dist(x,c)

=1 x€C;

IS minimized, where c; Is the centroid of the points
in cluster C,



K-means Clustering

Most common definition is with euclidean distance,
minimizing the Sum of Squares Error (SSE) function

- Sometimes K-means is defined like that

Problem: Given a set X of n points in a d-
dimensional space and an integer K group the points

Into K clusters C={C,, C,,...,C,} such that
k

Cost(C) = 2 2 (x — ¢;)?
=1 x€C;
IS minimized, where c; is the mean of the points in
Cluster Ci Sum of Squares Error (SSE)



Complexity of the k-means problem

NP-hard if the dimensionality of the data is at

least 2 (d>=2)
- Finding the best solution in polynomial time is infeasible

For d=1 the problem is solvable in polynomial
time (how?)

A simple iterative algorithm works quite well in
practice



-
K-means Algorithm

- Also known as Lloyd’s algorithm.

- K-means is sometimes synonymous with this
algorithm

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change




K-means Algorithm — Initialization

- Initial centroids are often chosen randomly.
- Clusters produced vary from one run to another.



Two different K-means Clusterings
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Importance of Choosing Initial Centroids

Iteration 6
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-
Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Importance of Choosing Initial Centroids
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Dealing with Initialization

Do multiple runs and select the clustering with the
smallest error

Select original set of points by methods other
than random . E.g., pick the most distant (from
each other) points as cluster centers (K-means++
algorithm)



K-means Algorithm — Centroids

The centroid depends on the distance function

- The minimizer for the distance function

‘Closeness’ is measured by Euclidean distance

(SSE), cosine similarity, correlation, etc.

Centroid:

- The mean of the points in the cluster for SSE, and cosine
similarity

- The median for Manhattan distance.

Finding the centroid is not always easy

- It can be an NP-hard problem for some distance functions
E.g., median form multiple dimensions



K-means Algorithm — Convergence

K-means will converge for common similarity
measures mentioned above.

- Most of the convergence happens in the first few
iterations.

- Often the stopping condition is changed to ‘Until
relatively few points change clusters’

Complexity isO(n*K*1*d)

- N = number of points, K = number of clusters,
| = number of iterations, d = dimensionality

In general a fast and efficient algorithm



Limitations of K-means

- K-means has problems when clusters are of
different
- Sizes
- Densities
- Non-globular shapes

- K-means has problems when the data contains
outliers.
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Limitations of K-means: Differing Sizes
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Limitations of K-means: Differing Density
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Imitations of K-means: Non-globular Shapes
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Overcoming K-means Limitations
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One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Overcoming K-means Limitations
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Overcoming K-means Limitations
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Variations

K-medoids: Similar problem definition as in K-
means, but the centroid of the cluster is defined
to be one of the points in the cluster (the medoid).

K-centers: Similar problem definition as in K-
means, but the goal now is to minimize the
maximum diameter of the clusters (diameter of a
cluster is maximum distance between any two
points in the cluster).



